Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and introduced rainbow trout (O. mykiss) in the South Fork of the Snake River watershed, Idaho

2007 ◽  
Vol 9 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Kelly Gunnell ◽  
Michelle K. Tada ◽  
Felicia A. Hawthorne ◽  
Ernest R. Keeley ◽  
Margaret B. Ptacek
Author(s):  
Ryan Kovach ◽  
Lisa Eby

The cutthroat trout Oncorhynchus clarki is Wyoming's only native trout. The Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) is designated as a "species of special concern" by a number of agencies and conservation groups. Although the Yellowstone cutthroat trout has recently avoided federal listing because of robust headwater populations (USFWS 2006), they face continued threats across their range. The fine-spotted Snake River native trout is a morphologically divergent ecotype of the Yellowstone subspecies, although it is not genetically distinguishable (Allendorf and Leary 1988, Novak et al. 2005). The Gros Ventre, an important tributary of the Snake River located partially in Grand Teton National Park, historically supported robust populations of fine­ spotted Snake River cutthroat trout. Principal threats to Gros Ventre native trout, especially in the lower end of the drainage within the park boundaries, include both water diversions (loss of water and fish into irrigation ditches) and presence of exotic species.


2014 ◽  
Vol 5 (2) ◽  
pp. 227-242 ◽  
Author(s):  
Kevin A. Meyer ◽  
Erin I. Larson ◽  
Christopher L. Sullivan ◽  
Brett High

Abstract The distribution and abundance of Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri across their native range is relatively well-known, but evaluations of trends in distribution and abundance over time are lacking. In 2010–2011, we resurveyed 74 stream reaches in the upper Snake River basin of Idaho that were sampled in the 1980s and again in 1999–2000 to evaluate changes in the distribution and abundance of Yellowstone cutthroat trout and nonnative trout over time. Yellowstone cutthroat trout occupied all 74 reaches in the 1980s, 70 reaches in 1999–2000, and 69 reaches in 2010–2011. In comparison, rainbow trout O. mykiss and rainbow × cutthroat hybrid occupancy increased from 23 reaches in the 1980s to 36 reaches in 1999–2000, and then declined back to 23 reaches in 2010–2011. The proportion of reaches occupied by brown trout Salmo trutta and brook trout Salvelinus fontinalis was largely unchanged across time periods. Yellowstone cutthroat trout abundance declined from a mean of 40.0 fish/100 linear meters of stream in the 1980s to 32.8 fish/100 m in 2010–2011. In contrast, estimates of abundance increased over time for all species of nonnative trout. Population growth rate (λ) was therefore below replacement for Yellowstone cutthroat trout (mean  =  0.98) and above replacement for rainbow trout (1.07), brown trout (1.08), and brook trout (1.04), but 90% confidence intervals overlapped unity for all species. However, λ differed statistically from 1.00 within some individual drainages for each species. More pronounced drought conditions in any given year resulted in lower Yellowstone cutthroat trout abundance 1 y later. Our results suggest that over a span of up to 32 y, the distribution and abundance of Yellowstone cutthroat trout in the upper Snake River basin of Idaho appears to be relatively stable, and nonnative trout do not currently appear to be expanding across the basin.


2007 ◽  
Vol 64 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Steven M Seiler ◽  
Ernest R Keeley

We hypothesized that body shape differences between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), rainbow trout (Oncorhynchus mykiss), and their hybrids may influence swimming ability and thus play an important role in the invasion of nonnative rainbow trout and hybrid trout into native cutthroat trout populations. We reared Yellowstone cutthroat trout, rainbow trout, and reciprocal hybrid crosses in a common environment and conducted sustained swimming trials in order to test for genetically based morphological and swimming stamina differences. Linear and geometric morphometric analyses identified differences in body shape, with cutthroat trout having slender bodies and small caudal peduncles and rainbow trout having deep bodies and long caudal peduncles. Hybrid crosses were morphologically intermediate to the parental genotypes, with a considerable maternal effect. Consistent with morphological differences, cutthroat trout had the lowest sustained swimming velocity and rainbow trout had the highest sustained swimming velocity. Sustained swimming ability of hybrid genotypes was not different from that of rainbow trout. Our results suggest that introduced rainbow trout and cutthroat-rainbow trout hybrids potentially out-compete native Yellowstone cutthroat trout through higher sustained swimming ability.


2020 ◽  
Vol 77 (9) ◽  
pp. 1433-1445 ◽  
Author(s):  
Kurt C. Heim ◽  
Thomas E. McMahon ◽  
Steven T. Kalinowski ◽  
Brian D. Ertel ◽  
Todd M. Koel

Understanding factors mediating hybridization between native and invasive species is crucial for conservation. We assessed the spatial distribution of hybridization between invasive rainbow trout (Oncorhynchus mykiss) and native Yellowstone cutthroat trout (Oncorhynchus clarkii bouveri) in the Lamar River of Yellowstone National Park using a paired telemetry and genetic dataset. Spawning populations containing hybrids (15/30) occupied the full spectrum of abiotic conditions in the watershed (stream temperature, stream size, runoff timing), including an intermittent stream that dried completely in late June, and mainstem spawning locations. Hybrids and rainbow trout occupied an entire high-elevation (∼2500–1900 m) tributary where rainbow trout ancestry was highest in headwaters and decreased downstream. Fluvial distance to this ostensible source population was the only covariate included in top hybridization models; effects of abiotic covariates and stocking intensity were relatively weak. In this watershed, abiotic conditions are unlikely to mediate continued hybridization. We conclude that management intervention is important for the persistence of nonhybridized Yellowstone cutthroat trout and highlight the value of pairing telemetry with genetic analysis to identify and characterize populations for hybridization assessments.


Author(s):  
Patrick Uthe ◽  
Robert Al-Chokhachy

The Upper Snake River represents one of the largest remaining strongholds of Yellowstone cutthroat across its native range. Understanding the effects of restoration activities and the diversity of life-history patterns and factors influencing such patterns remains paramount for long-term conservation strategies. In 2011, we initiated a project to quantify the success of the removal of a historic barrier on Spread Creek and to evaluate the relative influence of different climate attributes on native Yellowstone cutthroat trout and non-native brook trout behavior and fitness. Our results to date have demonstrated the partial success of the dam removal with large, fluvial Yellowstone cutthroat trout migrating up Spread Creek to spawn, thus reconnecting this population to the greater Snake River metapopulation. Early indications from mark-recapture data demonstrate considerable differences in life-history and demographic patterns across tributaries within the Spread Creek drainage. Our results highlight the diversity of life-history patterns of resident and fluvial Yellowstone cutthroat trout with considerable differences in seasonal and annual growth rates and behavior across populations. Continuing to understand the factors influencing such patterns will provide a template for prioritizing restoration activities in the context of future challenges to conservation (e.g., climate change).


Sign in / Sign up

Export Citation Format

Share Document