Abiotic conditions are unlikely to mediate hybridization between invasive rainbow trout and native Yellowstone cutthroat trout in a high-elevation metapopulation

2020 ◽  
Vol 77 (9) ◽  
pp. 1433-1445 ◽  
Author(s):  
Kurt C. Heim ◽  
Thomas E. McMahon ◽  
Steven T. Kalinowski ◽  
Brian D. Ertel ◽  
Todd M. Koel

Understanding factors mediating hybridization between native and invasive species is crucial for conservation. We assessed the spatial distribution of hybridization between invasive rainbow trout (Oncorhynchus mykiss) and native Yellowstone cutthroat trout (Oncorhynchus clarkii bouveri) in the Lamar River of Yellowstone National Park using a paired telemetry and genetic dataset. Spawning populations containing hybrids (15/30) occupied the full spectrum of abiotic conditions in the watershed (stream temperature, stream size, runoff timing), including an intermittent stream that dried completely in late June, and mainstem spawning locations. Hybrids and rainbow trout occupied an entire high-elevation (∼2500–1900 m) tributary where rainbow trout ancestry was highest in headwaters and decreased downstream. Fluvial distance to this ostensible source population was the only covariate included in top hybridization models; effects of abiotic covariates and stocking intensity were relatively weak. In this watershed, abiotic conditions are unlikely to mediate continued hybridization. We conclude that management intervention is important for the persistence of nonhybridized Yellowstone cutthroat trout and highlight the value of pairing telemetry with genetic analysis to identify and characterize populations for hybridization assessments.

2007 ◽  
Vol 64 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Steven M Seiler ◽  
Ernest R Keeley

We hypothesized that body shape differences between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), rainbow trout (Oncorhynchus mykiss), and their hybrids may influence swimming ability and thus play an important role in the invasion of nonnative rainbow trout and hybrid trout into native cutthroat trout populations. We reared Yellowstone cutthroat trout, rainbow trout, and reciprocal hybrid crosses in a common environment and conducted sustained swimming trials in order to test for genetically based morphological and swimming stamina differences. Linear and geometric morphometric analyses identified differences in body shape, with cutthroat trout having slender bodies and small caudal peduncles and rainbow trout having deep bodies and long caudal peduncles. Hybrid crosses were morphologically intermediate to the parental genotypes, with a considerable maternal effect. Consistent with morphological differences, cutthroat trout had the lowest sustained swimming velocity and rainbow trout had the highest sustained swimming velocity. Sustained swimming ability of hybrid genotypes was not different from that of rainbow trout. Our results suggest that introduced rainbow trout and cutthroat-rainbow trout hybrids potentially out-compete native Yellowstone cutthroat trout through higher sustained swimming ability.


1999 ◽  
Vol 77 (12) ◽  
pp. 1984-1990 ◽  
Author(s):  
James R Lovvorn ◽  
Daniel Yule ◽  
Clayton E Derby

We studied the relative vulnerability of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) versus rainbow trout (Oncorhynchus mykiss) stocked as fingerlings in the North Platte River, Wyoming, to Double-crested Cormorant (Phalacrocorax auritus) predation. Cutthroat fingerlings decreased as a fraction of the population from stocking in late June to electrofishing surveys in the following October and March. In contrast, the fraction of cutthroat fingerlings among tagged fingerlings eaten by cormorants collected on the river was significantly greater than that in the population when originally stocked. More limited data from pellets regurgitated by adult cormorants at a nearby colony and in American White Pelicans (Pelecanus erythrorhynchos) collected on the river showed the same trend toward greater percentages of cutthroat trout being consumed than were present among trout stocked. There were no differences in cormorant predation rates on the Eagle Lake strain of rainbow trout reared under shaded versus partially shaded conditions, or between Auburn and Bar BC strains of Snake River (Yellowstone) cutthroat trout. On the North Platte River, cutthroat trout fingerlings were more susceptible to cormorant predation than rainbow trout of similar size that were stocked simultaneously.


2009 ◽  
Vol 66 (7) ◽  
pp. 1153-1168 ◽  
Author(s):  
Clint C. Muhlfeld ◽  
Thomas E. McMahon ◽  
Durae Belcer ◽  
Jeffrey L. Kershner

We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout ( Oncorhynchus clarkii lewisi ; WCT), introduced rainbow trout ( Oncorhynchus mykiss ; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.


2014 ◽  
Vol 92 (9) ◽  
pp. 777-784 ◽  
Author(s):  
M.M. Yau ◽  
E.B. Taylor

Hybridization between rainbow trout (Oncorhynchus mykiss (Walbaum, 1792)) and westslope cutthroat trout (Oncorhynchus clarkii lewisi (Girard, 1856)) occurs commonly when rainbow trout are introduced into the range of westslope cutthroat trout. Typically, hybridization is most common in warmer, lower elevation habitats, but much less common in colder, higher elevation habitats. We assessed the tolerance to cold water temperature (i.e., critical thermal minimum, CTMin) in juvenile rainbow trout and westslope cutthroat trout to test the hypothesis that westslope cutthroat trout better tolerate low water temperature, which may explain the lower prevalence of rainbow trout and interspecific hybrids in higher elevation, cold-water habitats (i.e., the “elevation refuge hypothesis”). All fish had significantly lower CTMin values (i.e., were better able to tolerate low temperatures) when they were acclimated to 15 °C (mean CTMin = 1.37 °C) versus 18 °C (mean CTMin = 1.91 °C; p < 0.001). Westslope cutthroat trout tended to have lower CTMin than rainbow trout from two populations, second–generation (F2) hybrids between two rainbow trout populations, and backcrossed rainbow trout at 15 °C (cross type × acclimation temperature interaction; p = 0.018). Differential adaptation to cold water temperatures may play a role in influencing the spatial distribution of hybridization between sympatric species of trout.


2009 ◽  
Vol 66 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Steven M. Seiler ◽  
Ernest R. Keeley

When nonnative species become established within new communities, competition may play a role in determining the persistence of ecologically similar native species. In western North America, many native cutthroat trout ( Oncorhynchus clarkii ) populations have been replaced by nonnative rainbow trout ( Oncorhynchus mykiss ). Superior competitive ability of rainbow trout and cutthroat–rainbow trout hybrids is often cited for this replacement; however, few studies have tested for mechanisms that might allow introduced rainbow trout to out-compete native trout species. Our previous work found individual-based differences in swimming and foraging ability among cutthroat trout, rainbow trout, and their hybrids. In this study, we tested for the presence and strength of competition between cohorts of cutthroat trout, rainbow trout, and their reciprocal hybrids. We assayed the growth rate of juvenile cutthroat trout in allopatry versus cutthroat trout when sympatric with rainbow trout and each hybrid cross. After controlling for size and density of trout, cutthroat trout cohorts in stream channels that contained hybrid genotypes experienced lower growth than cutthroat trout in allopatry. Averaged across heterospecific treatments, cutthroat trout growth was also lower than that of cutthroat trout cohorts in allopatry. Our study suggests that juvenile cutthroat trout experience a growth disadvantage when competing against cutthroat–rainbow hybrids.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 264
Author(s):  
Stephanie C. Driscoll ◽  
Hayley C. Glassic ◽  
Christopher S. Guy ◽  
Todd M. Koel

Microplastics have been documented in aquatic and terrestrial ecosystems throughout the world. However, few studies have investigated microplastics in freshwater fish diets. In this study, water samples and three trophic levels of a freshwater food web were investigated for microplastic presence: amphipods (Gammarus lacustris), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), and lake trout (Salvelinus namaycush). Microplastics and other anthropogenic materials were documented in water samples, amphipods, and fish, then confirmed using FTIR (Fourier-transform infrared) and Raman spectroscopy. Our findings confirmed the presence of microplastics and other anthropogenic materials in three trophic levels of a freshwater food web in a high-elevation lake in a national park, which corroborates recent studies implicating the global distribution of microplastics. This study further illustrates the need for global action regarding the appropriate manufacturing, use, and disposal of plastics to minimize the effects of plastics on the environment.


2008 ◽  
Vol 65 (4) ◽  
pp. 658-669 ◽  
Author(s):  
Matthew C Boyer ◽  
Clint C Muhlfeld ◽  
Fred W Allendorf

We analyzed 13 microsatellite loci to estimate gene flow among westslope cutthroat trout, Oncorhynchus clarkii lewisi, populations and determine the invasion pattern of hybrids between native O. c. lewisi and introduced rainbow trout, Oncorhynchus mykiss, in streams of the upper Flathead River system, Montana (USA) and British Columbia (Canada). Fourteen of 31 sites lacked evidence of O. mykiss introgression, and gene flow among these nonhybridized O. c. lewisi populations was low, as indicated by significant allele frequency divergence among populations (θST = 0.076, ρST = 0.094, P < 0.001). Among hybridized sites, O. mykiss admixture declined with upstream distance from a site containing a hybrid swarm with a predominant (92%) O. mykiss genetic contribution. The spatial distribution of hybrid genotypes at seven diagnostic microsatellite loci revealed that O. mykiss invasion is facilitated by both long distance dispersal from this hybrid swarm and stepping-stone dispersal between hybridized populations. This study provides an example of how increased straying rates in the invasive taxon can contribute to the spread of extinction by hybridization and suggests that eradicating sources of introgression may be a useful conservation strategy for protecting species threatened with genomic extinction.


Sign in / Sign up

Export Citation Format

Share Document