Seismic iterative migration velocity analysis: two strategies to update the velocity model

2017 ◽  
Vol 21 (4) ◽  
pp. 759-780 ◽  
Author(s):  
Emmanuel Cocher ◽  
Hervé Chauris ◽  
René-Édouard Plessix
Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE161-VE171 ◽  
Author(s):  
J. Schleicher ◽  
J. C. Costa ◽  
A. Novais

Image-wave propagation or velocity continuation describes the variation of the migrated position of a seismic event as a function of migration velocity. Image-wave propagation in the common-image gather (CIG) domain can be combined with residual-moveout analysis for iterative migration velocity analysis (MVA). Velocity continuation of CIGs leads to a detection of those velocities in which events flatten. Although image-wave continuation is based on the assumption of a constant migration velocity, the procedure can be applied in inhomogeneous media. For this purpose, CIGs obtained by migration with an inhomogeneous macrovelocity model are continued starting from a constant reference velocity. The interpretation of continued CIGs, as if they were obtained from residual migrations, leads to a correction formula that translates residual flattening velocities into absolute time-migration velocities. In this way, the migration velocity model can be improved iteratively until a satisfactory result is reached. With a numerical example, we found that MVA with iterative image continuation applied exclusively to selected CIGs can construct a reasonable migration velocity model from scratch, without the need to build an initial model from a previous conventional normal-moveout/dip-moveout velocity analysis.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1200-1209 ◽  
Author(s):  
Jinming Zhu ◽  
Larry Lines ◽  
Sam Gray

Reliable seismic depth migrations require an accurate input velocity model. Inaccurate velocity estimates will distort point diffractors into smiles or frowns on a depth section. For both poststack and prestack migrated sections, high velocities cause deep smiles while low velocities cause shallow frowns on migrated gathers. However, for prestack images in the offset domain, high velocities cause deep frowns while low velocities cause shallow smiles. If the velocity is correct, there will be no variation in the depth migration as a function of offset and no smiles or frowns in the offset domain. We explain migration responses both mathematically and graphically and thereby provide the basis for depth migration velocity analysis.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA225-WCA231 ◽  
Author(s):  
Jörg Schleicher ◽  
Jessé C. Costa

The idea of path-integral imaging is to sum over the migrated images obtained for a set of migration velocity models. Velocities where common-image gathers align horizontally are stationary, thus favoring these images in the overall stack. The overall image forms with no knowledge of the true velocity model. However, the velocity information associated with the final image can be determined in the process. By executing the path-integral imaging twice and weighting one of the stacks with the velocity value, the stationary velocities that produce the final image can then be extracted by a division of the two images. The velocity extraction, interpola-tion, and smoothing can be done fully automatically, without the need for human interpretation or other intervention. A numerical example demonstrated that quantitative information about the migration velocity model can be determined by double path-integral migration. The so-obtained velocity model can then be used as a starting model for subsequent velocity analysis tools like migration velocity analysis or tomographic methods.


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. S241-S249 ◽  
Author(s):  
Xiao-Bi Xie ◽  
Hui Yang

We have derived a broadband sensitivity kernel that relates the residual moveout (RMO) in prestack depth migration (PSDM) to velocity perturbations in the migration-velocity model. We have compared the kernel with the RMO directly measured from the migration image. The consistency between the sensitivity kernel and the measured sensitivity map validates the theory and the numerical implementation. Based on this broadband sensitivity kernel, we propose a new tomography method for migration-velocity analysis and updating — specifically, for the shot-record PSDM and shot-index common-image gather. As a result, time-consuming angle-domain analysis is not required. We use a fast one-way propagator and multiple forward scattering and single backscattering approximations to calculate the sensitivity kernel. Using synthetic data sets, we can successfully invert velocity perturbations from the migration RMO. This wave-equation-based method naturally incorporates the wave phenomena and is best teamed with the wave-equation migration method for velocity analysis. In addition, the new method maintains the simplicity of the ray-based velocity analysis method, with the more accurate sensitivity kernels replacing the rays.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC123-WC135 ◽  
Author(s):  
Pengfei Cai ◽  
Ilya Tsvankin

Combining PP-waves with mode-converted PS reflections in migration velocity analysis (MVA) can help build more accurate VTI (transversely isotropic with a vertical symmetry axis) velocity models. To avoid problems caused by the moveout asymmetry of PS-waves and take advantage of efficient MVA algorithms designed for pure modes, here we generate pure SS-reflections from PP and PS data using the [Formula: see text] method. Then the residual moveout in both PP and SS common-image gathers is minimized during iterative velocity updates. The model is divided into square cells, and the VTI parameters [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are defined at each grid point. The objective function also includes the differences between the migrated depths of the same reflectors on the PP and SS sections. Synthetic examples confirm that 2D MVA of PP- and PS-waves may be able to resolve all four relevant parameters of VTI media if reflectors with at least two distinct dips are available. The algorithm is also successfully applied to a 2D line from 3D ocean-bottom seismic data acquired at Volve field in the North Sea. After the anisotropic velocity model has been estimated, accurate depth images can be obtained by migrating the recorded PP and PS data.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1331-1339 ◽  
Author(s):  
Tariq Alkhalifah

Prestack migration velocity analysis in the time domain reduces the velocity‐depth ambiguity usually hampering the performance of prestack depth‐migration velocity analysis. In prestack τ migration velocity analysis, we keep the interval velocity model and the output images in vertical time. This allows us to avoid placing reflectors at erroneous depths during the velocity analysis process and, thus, avoid slowing down its convergence to the true velocity model. Using a 1D velocity update scheme, the prestack τ migration velocity analysis performed well on synthetic data from a model with a complex near‐surface velocity. Accurate velocity information and images were obtained using this time‐domain method. Problems occurred only in resolving a thin layer where the low resolution and fold of the synthetic data made it practically impossible to estimate velocity accurately in this layer. This 1D approach also provided us reasonable results for synthetic data from the Marmousi model. Despite the complexity of this model, the τ domain implementation of the prestack migration velocity analysis converged to a generally reasonable result, which includes properly imaging the elusive top‐of‐the‐reservoir layer.


Sign in / Sign up

Export Citation Format

Share Document