scholarly journals Population genetic evidence for a unique resource of Nile tilapia in Lake Tanganyika, East Africa

2019 ◽  
Vol 102 (8) ◽  
pp. 1107-1117 ◽  
Author(s):  
Asilatu Shechonge ◽  
Benjamin P. Ngatunga ◽  
Rashid Tamatamah ◽  
Stephanie J. Bradbeer ◽  
Emmanuel Sweke ◽  
...  
2008 ◽  
Vol 402 (2-3) ◽  
pp. 184-191 ◽  
Author(s):  
L. Campbell ◽  
Piet Verburg ◽  
D.G. Dixon ◽  
R.E. Hecky
Keyword(s):  
Food Web ◽  

2019 ◽  
Author(s):  
Papius Dias Tibihika ◽  
Manuel Curto ◽  
Esayas Alemayehu ◽  
Herwig Waidbacher ◽  
Charles Masembe ◽  
...  

Abstract Background The need for enhancing the productivity of fisheries in Africa triggered the introduction of non-native fish, causing dramatic changes to local species. In East Africa, the extensive translocation of Nile tilapia (Oreochromis niloticus) is one of the major factors in this respect. Using 40 microsatellite loci with SSR-GBS techniques, we amplified a total of 664 individuals to investigate the genetic structure of O. niloticus from East Africa in comparison to Ethiopian and Burkina Faso populations. Results All three African regions were characterized by independent gene-pools, however, the Ethiopian population from lake Tana showed to be more divergent than expected suggesting that it might be a different species. In East Africa, the genetic structure was congruent with both geographical location and anthropogenic activities. O. niloticus from Lake Turkana (Kenya) was isolated, while in Uganda, despite populations being rather similar to each other, two main natural catchments were able to be defined. We show that these two groups contributed to the gene-pool of different non-native populations. Moreover, admixture and possible hybridization with other tilapiine species may have contributed to the genetic divergence found in some populations such as Lake Victoria. We detected other factors that might be affecting Nile tilapia genetic variation. For example, most of the populations have gone through a reduction of genetic diversity, which can be a consequence of bottleneck caused by overfishing, genetic erosion due to fragmentation or founder effect resulting from stoking activities. Conclusions The anthropogenic activities particularly in the East African O. niloticus translocations, promoted admixture and contact with the native congenerics which may contribute to outbreeding depression and hence compromising the sustainability of the species in the region.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Tetsumi Takahashi ◽  
Stephan Koblmüller

Lake Tanganyika is the oldest of the Great Ancient Lakes in the East Africa. This lake harbours about 250 species of cichlid fish, which are highly diverse in terms of morphology, behaviour, and ecology. Lake Tanganyika's cichlid diversity has evolved through explosive speciation and is treated as a textbook example of adaptive radiation, the rapid differentiation of a single ancestor into an array of species that differ in traits used to exploit their environments and resources. To elucidate the processes and mechanisms underlying the rapid speciation and adaptive radiation of Lake Tanganyika's cichlid species assemblage it is important to integrate evidence from several lines of research. Great efforts have been, are, and certainly will be taken to solve the mystery of how so many cichlid species evolved in so little time. In the present review, we summarize morphological studies that relate to the adaptive radiation of Lake Tanganyika's cichlids and highlight their importance for understanding the process of adaptive radiation.


2005 ◽  
Vol 273 (1584) ◽  
pp. 257-266 ◽  
Author(s):  
Walter Salzburger ◽  
Harald Niederstätter ◽  
Anita Brandstätter ◽  
Burkhard Berger ◽  
Walther Parson ◽  
...  

2007 ◽  
Vol 73 (2) ◽  
pp. 195-198 ◽  
Author(s):  
Ellinor Michel ◽  
Peter B. Mcintyre ◽  
Jessica Chan

Sign in / Sign up

Export Citation Format

Share Document