scholarly journals A joint model for longitudinal and time-to-event data to better assess the specific role of donor and recipient factors on long-term kidney transplantation outcomes

2016 ◽  
Vol 31 (5) ◽  
pp. 469-479 ◽  
Author(s):  
Marie-Cécile Fournier ◽  
Yohann Foucher ◽  
Paul Blanche ◽  
Fanny Buron ◽  
Magali Giral ◽  
...  
2020 ◽  
Author(s):  
Nobuhle Nokubonga Mchunu ◽  
Henry Mwambi ◽  
Tarylee Reddy ◽  
Nonhlanhla Yende-Zuma ◽  
Kogieleum Naidoo

Abstract Background: Modelling of longitudinal biomarkers and time-to-event data are important to monitor disease progression. However, these two variables are traditionally analyzed separately or time-varying Cox models are used. The former strategy fails to recognize the shared random-effects from the two processes while the latter assumes that longitudinal biomarkers are exogenous covariates, resulting in inefficient or biased estimates for the time-to-event model. Therefore, we used joint modelling for longitudinal and time-to-event data to assess the effect of longitudinal CD4 count on mortality. Methods: We studied 4014 patients from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) who initiated ART between June 2004 and August 2013. We used proportional hazards regression model to assess the effect of baseline characteristics (excluding CD4 count) on mortality, and linear mixed effect models to evaluate the effect of baseline characteristics on the CD4 count evolution over time. Thereafter, the two analytical approaches were amalgamated to form an advanced joint model for studying the effect of longitudinal CD4 count on mortality. To illustrate the virtues of the joint model, the results from the joint model were compared to those from the time-varying Cox model. Results: Using joint modelling, we found that lower CD4 count over time was associated with a 1.3-fold increase in the risk of death, (HR: 1.34, 95% CI: 1.27-1.42). Whereas, results from the time-varying Cox model showed lower CD4 count over time was associated with a 1.2-fold increase in the risk of death, (HR: 1.17, 95% CI: 1.12-1.23). Conclusions: Joint modelling enabled the assessment of the effect of longitudinal CD4 count on mortality while correcting for shared random effects between longitudinal and time-to-event models. In the era of universal test and treat, the evaluation of CD4 count is still crucial for guiding the initiation and discontinuation of opportunistic infections prophylaxis and assessment of late presenting patients. CD4 count can also be used when immunological failure is suspected as we have shown that it is associated with mortality. Keywords: Time-to-event data; longitudinal data; joint models; CD4 count; mortality; bias


2016 ◽  
Vol 32 (10) ◽  
pp. S170-S171
Author(s):  
W. Ben Ali ◽  
T. Ducruet ◽  
I. El-Hamamsy ◽  
D. Bouchard ◽  
N.C. Poirier

2019 ◽  
Vol 6 (1) ◽  
pp. 223-240 ◽  
Author(s):  
Grigorios Papageorgiou ◽  
Katya Mauff ◽  
Anirudh Tomer ◽  
Dimitris Rizopoulos

In this review, we present an overview of joint models for longitudinal and time-to-event data. We introduce a generalized formulation for the joint model that incorporates multiple longitudinal outcomes of varying types. We focus on extensions for the parametrization of the association structure that links the longitudinal and time-to-event outcomes, estimation techniques, and dynamic predictions. We also outline the software available for the application of these models.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nobuhle N. Mchunu ◽  
Henry G. Mwambi ◽  
Tarylee Reddy ◽  
Nonhlanhla Yende-Zuma ◽  
Kogieleum Naidoo

Abstract Background Modelling of longitudinal biomarkers and time-to-event data are important to monitor disease progression. However, these two variables are traditionally analyzed separately or time-varying Cox models are used. The former strategy fails to recognize the shared random-effects from the two processes while the latter assumes that longitudinal biomarkers are exogenous covariates, resulting in inefficient or biased estimates for the time-to-event model. Therefore, we used joint modelling for longitudinal and time-to-event data to assess the effect of longitudinal CD4 count on mortality. Methods We studied 4014 patients from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) who initiated ART between June 2004 and August 2013. We used proportional hazards regression model to assess the effect of baseline characteristics (excluding CD4 count) on mortality, and linear mixed effect models to evaluate the effect of baseline characteristics on the CD4 count evolution over time. Thereafter, the two analytical approaches were amalgamated to form an advanced joint model for studying the effect of longitudinal CD4 count on mortality. To illustrate the virtues of the joint model, the results from the joint model were compared to those from the time-varying Cox model. Results Using joint modelling, we found that lower CD4 count over time was associated with a 1.3-fold increase in the risk of death, (HR: 1.34, 95% CI: 1.27-1.42). Whereas, results from the time-varying Cox model showed lower CD4 count over time was associated with a 1.2-fold increase in the risk of death, (HR: 1.17, 95% CI: 1.12-1.23). Conclusions Joint modelling enabled the assessment of the effect of longitudinal CD4 count on mortality while correcting for shared random effects between longitudinal and time-to-event models. In the era of universal test and treat, the evaluation of CD4 count is still crucial for guiding the initiation and discontinuation of opportunistic infections prophylaxis and assessment of late presenting patients. CD4 count can also be used when immunological failure is suspected as we have shown that it is associated with mortality.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Peilin Meng ◽  
Jing Ye ◽  
Xiaomeng Chu ◽  
Bolun Cheng ◽  
Shiqiang Cheng ◽  
...  

AbstractIt is well-accepted that both environment and genetic factors contribute to the development of mental disorders (MD). However, few genetic studies used time-to-event data analysis to identify the susceptibility genetic variants associated with MD and explore the role of environment factors in these associations. In order to detect novel genetic loci associated with MD based on the time-to-event data and identify the role of environmental factors in them, this study recruited 376,806 participants from the UK Biobank cohort. The MD outcomes (including overall MD status, anxiety, depression and substance use disorders (SUD)) were defined based on in-patient hospital, self-reported and death registry data collected in the UK Biobank. SPACOX approach was used to identify the susceptibility loci for MD using the time-to-event data of the UK Biobank cohort. And then we estimated the associations between identified candidate loci, fourteen environment factors and MD through a phenome-wide association study and mediation analysis. SPACOX identified multiple candidate loci for overall MD status, depression and SUD, such as rs139813674 (P value = 8.39 × 10–9, ZNF684) for overall MD status, rs7231178 (DCC, P value = 2.11 × 10–9) for depression, and rs10228494 (FOXP2, P value = 6.58 × 10–10) for SUD. Multiple environment factors could influence the associations between identified loci and MD, such as confide in others and felt hated. Our study identified novel candidate loci for MD, highlighting the strength of time-to-event data based genetic association studies. We also observed that multiple environment factors could influence the association between susceptibility loci and MD.


Sign in / Sign up

Export Citation Format

Share Document