Response to “Potential distribution of citrus black spot in the United States based on climatic conditions”, Er et al. 2013

2014 ◽  
Vol 139 (2) ◽  
pp. 237-240 ◽  
Author(s):  
James H. Graham ◽  
Tim R. Gottwald ◽  
Lavern W. Timmer ◽  
Armando Bergamin Filho ◽  
Frank Van Den Bosch ◽  
...  
2013 ◽  
Vol 137 (3) ◽  
pp. 635-647 ◽  
Author(s):  
H. L. Er ◽  
P. D. Roberts ◽  
J. J. Marois ◽  
A. H. C. van Bruggen

2002 ◽  
Vol 92 (5) ◽  
pp. 464-477 ◽  
Author(s):  
R. P. Baayen ◽  
P. J. M. Bonants ◽  
G. Verkley ◽  
G. C. Carroll ◽  
H. A. van der Aa ◽  
...  

The population structure of Guignardia citricarpa sensu lato (anamorph: Phyllosticta citricarpa), a fungus of which strains pathogenic to citrus are subject to phytosanitary legislation in the European Union and the United States, was investigated. Internal transcribed spacer sequences revealed two phylogenetically distinct groups in G. citricarpa. This distinction was supported by amplified fragment length polymorphism analysis that also supported the exclusion of two isolates that had apparently been misclassified as G. citricarpa. On cherry decoction agar, but not on other media, growth rates of group I isolates were lower than those of group II isolates. Conidial dimensions were similar, but group I isolates formed conidia with barely visible mucoid sheaths, whereas those of group II formed conidia with thick sheaths. Cultures of isolates belonging to group I produced rare infertile perithecia, whereas fertile perithecia were formed by most isolates of group II. Colonies of isolates belonging to group I were less dark than those of group II, with a wider translucent outer zone and a lobate rather than entire margin. On oatmeal agar, exclusively group I isolates formed a yellow pigment. Group I harbored strains from citrus fruits with classical black spot lesions (1 to 10 mm in diameter) usually containing pycnidia. Group II harbored endophytic strains from a wide range of host species, as well as strains from symptomless citrus fruits or fruits with minute spots (<2-mm diameter) without pycnidia. These observations support the historic distinction between slowly growing pathogenic isolates and morphologically similar fast-growing, nonpathogenic isolates of G. citricarpa. The latter proved to belong to G. mangiferae (P. capitalensis), a ubiquitous endophyte of woody plants with numerous probable synonyms including G. endophyllicola, G. psidii, P. anacardiacearum, and P. theacearum. G. mangiferae occurs in the European Union and the United States on many host species including citrus, and does not cause symptoms of citrus black spot, justifying its exclusion from quarantine measures.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
T. S. Schubert ◽  
M. M. Dewdney ◽  
N. A. Peres ◽  
M. E. Palm ◽  
A. Jeyaprakash ◽  
...  

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 μm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 μm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 μm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown ‘Valencia’ sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 97-101 ◽  
Author(s):  
L. Meyer ◽  
G. M. Sanders ◽  
R. Jacobs ◽  
L. Korsten

If South African citrus exporters wish to retain their competitive edge in the European market and access new markets such as the United States of America, it is of quarantine importance to distinguish between the citrus black spot pathogen, Guignardia citricarpa, and the harmless endophyte, G. mangiferae. The endophyte is not a sanitary or phytosanitary concern. This paper describes the design of species-specific primers that are able to detect and distinguish between these two Guignardia species. Application of the primer set CITRIC1 and CAMEL2 in conjunction with the ITS4 primer yielded polymerase chain reaction (PCR) amplicons of approximately 580 bp and 430 bp for G. citricarpa and G. mangiferae, respectively. Results obtained with these primers are in accordance with sequence data, and repeated tests verified accuracy and sensitivity. A BLAST search revealed no matches other than G. citricarpa and G. mangiferae, and no positive PCR results were obtained with Colletotrichum gloeosporioides, which is the most common contaminant in black spot lesions. We are, therefore, able to distinguish G. citricarpa and G. mangiferae unequivocally using a PCR-based method. This method was further improved to directly isolate DNA from fruit lesions by means of the DNeasy Plant Mini Kit (Qiagen). This eliminates the prior need for culturing the slow-growing organism, thereby shortening the time required to one day to test for and verify the presence or absence of the pathogenic G. citricarpa in export consignments.


Koedoe ◽  
1991 ◽  
Vol 34 (1) ◽  
Author(s):  
G.H. Groenewald

Five types of burrow casts from the Lystrosaurus- Procolophon Assemblage-zone (Palingkloof Member and Katberg Formation, Triassic, Karoo sequence. South Africa) are associated with casts of desiccation cracks and red mudstone. Vertebrate remains of Lystrosaurus sp. and Procolophon sp. indicate that these animals probably made the burrows during the Triassic. It is possible that burrowing was an adaptive advantage during periods of severe and unfavourable climatic conditions. Similar burrow casts were found in the Dicynodon-Theriognathus Assemblage-zone, suggesting a burrowing habit for fauna represented in this zone. In structure, the burrow casts resemble those of Scoyenia, Thalassinoides, Histioderma, Gyrolithes and Planolites reported from Germany, France, Asia, Ireland, Spain and the United States of America.


1870 ◽  
Vol 2 (4) ◽  
pp. 43-44
Author(s):  
V. T. Chambers

Seeing in the last number of the Canadian Entomologist, a description of the egss of A. Luna, reminds me to ask of you the explanation of a curious circumstance in the life-history of one bred by me from the larva last year. I will premise that I am writing without my notes, and therefore cannot give figures accurately, but can give the facts. There may be nothing very strange about it, but two of the best entomologists in the United States inform me that it is entirely new to them. It is this:–Some time in the latter part of the summer of 1868 I took, feeding on walnut leaves, a mature larva of A. Luna; from which I did not houi to rear the mature insect, because I counted on the larva over twenty eggs like those of a Tachina, Underneath some of the eggs I could discern with a lens a minute opening through which the fly-larva had entered the body of the Luna larva. The skin of the latter was more or less discoloured under each egg, but under some-under many in fact there was a dense black spot, sometimes two lines in diameter.


2018 ◽  
Author(s):  
Matthew Nichols ◽  
Chris J Butler ◽  
Wayne D Lord ◽  
Michelle L Haynie

The vector-borne parasite Trypanosoma cruzi infects seven million individuals globally and causes chronic cardiomyopathy and gastrointestinal diseases. Recently, T. cruzi has emerged in the southern United States. It is crucial for disease surveillance efforts to detail regions that present favorable climatic conditions for T. cruzi and vector establishment. We used MaxEnt to develop an ecological niche model for T. cruzi and five widespread Triatoma vectors based on 546 published localities within the United States. We modeled regions of current potential T. cruzi and Triatoma distribution and then regions projected to have suitable climatic conditions by 2070. Regions with suitable climatic conditions for the study organisms are predicted to increase within the United States. Our findings agree with the hypothesis that climate change will facilitate the expansion of tropical diseases throughout temperate regions and suggest climate change will influence the expansion of T. cruzi and Triatoma vectors in the United States.


Sign in / Sign up

Export Citation Format

Share Document