Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland

2011 ◽  
Vol 182 (1-4) ◽  
pp. 597-606 ◽  
Author(s):  
Juanjuan Qu ◽  
Guangming Ren ◽  
Bao Chen ◽  
Jinghua Fan ◽  
Yong E
LWT ◽  
2021 ◽  
pp. 111308
Author(s):  
Fumin Chi ◽  
Zhankun Tan ◽  
Xuedong Gu ◽  
Lin Yang ◽  
Zhang Luo

2021 ◽  
Author(s):  
Emily K. Bechtold ◽  
Stephanie Ryan ◽  
Sarah E. Moughan ◽  
Ravi Ranjan ◽  
Klaus Nüsslein

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future.


2020 ◽  
Vol 4 (3) ◽  
pp. 225-238
Author(s):  
Kamrun Nahar ◽  
Jean-Baptiste Floc’h ◽  
Claudia Goyer ◽  
Bernie J. Zebarth ◽  
Sean Whitney

Potato cultivars susceptible to common scab were previously reported to harbor five to six times more abundant pathogenic Streptomyces spp. in the rhizosphere soils compared with tolerant cultivars. It is still unclear if the diversity of soil bacterial communities is related to the abundance of pathogenic Streptomyces spp. This study evaluated the effects of potato cultivar on the diversity of bacterial communities in three spatial locations (soil located close to the plant [SCP], in the rhizosphere soil [RS], and in the geocaulosphere soil [GS]) in 2013 and 2014. Common scab tolerant (Goldrush and Hindenburg) and susceptible cultivars (Green Mountain and Agria) were planted in a field infested with pathogenic Streptomyces spp. causing common scab. The β-diversity of the bacterial community was significantly different between years and on dates within each year according to a permutational multivariate analysis of variance. The β-diversity also varied significantly among spatial locations (i.e., SCP, RS, and GS), probably due to changes in soil properties, but did not change significantly among potato cultivars. The architecture of the bacterial network in RS in 2014 was more complex compared with 2013 with a 2.5-fold increase in the number of bacteria included according to a co-occurrence analysis. These results indicated that the soil bacterial community diversity changed temporally and spatially. However, bacterial community diversity and richness were not affected by potato cultivar, suggesting that there were no relationships between bacterial community diversity or richness and the abundance of pathogenic Streptomyces spp.


Sign in / Sign up

Export Citation Format

Share Document