Interval-Parameter Conditional Value-at-Risk Two-Stage Stochastic Programming Model for Management of End-of-Life Vehicles

2019 ◽  
Vol 24 (5) ◽  
pp. 547-567
Author(s):  
Vladimir Simic
Author(s):  
Xianrui Liao ◽  
Chong Meng ◽  
Zhixing Ren ◽  
Wenjin Zhao

The optimization of ecological water supplement scheme in Momoge National Nature Reserve (MNNR), using an interval-parameter two-stage stochastic programming model (IPTSP), still experiences problems with fuzzy uncertainties and the wide scope of the obtained optimization schemes. These two limitations pose a high risk of system failure causing high decision risk for decision-makers and render it difficult to further undertake optimization schemes respectively. Therefore, an interval-parameter fuzzy two-stage stochastic programming (IPFTSP) model derived from an IPTSP model was constructed to address the random variable, the interval uncertainties and the fuzzy uncertainties in the water management system in the present study, to reduce decision risk and narrow down the scope of the optimization schemes. The constructed IPFTSP model was subsequently applied to the optimization of the ecological water supplement scheme of MNNR under different scenarios, to maximize the recovered habitat area and the carrying capacity for rare migratory water birds. As per the results of the IPFTSP model, the recovered habitat areas for rare migratory birds under low, medium and high flood flow scenarios were (14.06, 17.88) × 103, (14.92, 18.96) × 103 and (15.83, 19.43) × 103 ha, respectively, and the target value was (14.60, 18.47) × 103 ha with a fuzzy membership of (0.01, 0.83). Fuzzy membership reflects the possibility level that the model solutions satisfy the target value and the corresponding decision risk. We further observed that the habitat area recovered by the optimization schemes of the IPFTSP model was significantly increased compared to the recommended scheme, and the increases observed were (5.22%, 33.78%), (11.62%, 41.88%) and (18.44%, 45.39%). In addition, the interval widths of the recovered habitat areas in the IPFTSP model were reduced by 17.15%, 17.98% and 23.86%, in comparison to those from the IPTSP model. It was revealed that the IPFTSP model, besides generating the optimal decision schemes under different scenarios for decision-makers to select and providing decision space to adjust the decision schemes, also shortened the decision range, thereby reducing the decision risk and the difficulty of undertaking decision schemes. In addition, the fuzzy membership obtained from the IPFTSP model, reflecting the relationship among the possibility level, the target value, and the decision risk, assists the decision-makers in planning the ecological water supplement scheme with a preference for target value and decision risk.


2019 ◽  
Vol 181 (2) ◽  
pp. 473-507 ◽  
Author(s):  
E. Ruben van Beesten ◽  
Ward Romeijnders

Abstract In traditional two-stage mixed-integer recourse models, the expected value of the total costs is minimized. In order to address risk-averse attitudes of decision makers, we consider a weighted mean-risk objective instead. Conditional value-at-risk is used as our risk measure. Integrality conditions on decision variables make the model non-convex and hence, hard to solve. To tackle this problem, we derive convex approximation models and corresponding error bounds, that depend on the total variations of the density functions of the random right-hand side variables in the model. We show that the error bounds converge to zero if these total variations go to zero. In addition, for the special cases of totally unimodular and simple integer recourse models we derive sharper error bounds.


Sign in / Sign up

Export Citation Format

Share Document