Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China

Author(s):  
Haiyan Fang ◽  
Zemeng Fan
Author(s):  
Haiyan Fang ◽  
Zemeng Fan

Impact of land use and land cover change on soil erosion is still imperfectly understood, especially in northeastern China where severe soil erosion has occurred since the 1950s. It is important to identify temporal changes of soil erosion for the black soil region at different spatial scales. In the present study, potential soil erosion in northeastern China was estimated based on the Revised Universal Loss Equation by integrating satellite images, and the variability of soil erosion at different spatial scales following land use changes in 1980, 1990, 2000, 2010, and 2017 was analyzed. The regionally spatial patterns of soil loss coincided with the topography, rainfall erosivity, soil erodibility, and use patterns, and around 45% of soil loss came from arable land. Regionally, soil erosion rates increased from 1980 to 2010 and decreased from 2010 to 2017, ranging from 3.91 to 4.45 Mg ha−1 yr−1 with an average of 4.22 Mg ha−1 yr−1 in 1980–2017. Areas with a rate of soil erosion less than 1.41 Mg ha−1 yr−1 decreased from 1980 to 2010 and increased from 2010 to 2017, and the opposite changing patterns occurred in higher erosion classes. Arable land continuously increased at the expense of forest in the high-elevation and steep-slope areas from 1980 to 2010, and decreased from 2010 to 2017, resulting in increased areas with erosion rates higher than 7.05 Mg ha−1 yr−1. At a provincial scale, Liaoning Province experienced the highest soil erosion rate of 9.43 Mg ha−1 yr−1, followed by Jilin Province, the eastern Inner Mongolia Autonomous Region, and Heilongjiang Province. At a county scale, around 75% of the counties had a soil erosion rate higher than the tolerance level. The county numbers with higher erosion rate increased in 1980–2010 and decreased in 2010–2017, resulting from the sprawl and withdrawal of arable land.


2019 ◽  
Vol 99 (4) ◽  
pp. 406-419 ◽  
Author(s):  
Haiqiang Li ◽  
Xiaolin Liao ◽  
Hansong Zhu ◽  
Xiaorong Wei ◽  
Mingan Shao

Black soil is inherently productive and fertile but is subject to soil erosion. Understanding the distribution of soil physical and hydraulic properties of the soil profile under various land uses would help reveal the mechanism behind the degradation of black soil. In this study, we investigated the variation in soil physical and hydraulic properties with land uses and soil depths in the black soil area of Northeast China. Disturbed samples and undisturbed soil cores were collected from 0–100 cm soil depths under agricultural land (AL), forestland (FL), and shrub land (SL). Our results showed that the land use and soil depth significantly affected the soil bulk density (BD), field capacity (FC), capillary moisture capacity (CMC), saturated hydraulic conductivity (Ks), and soil water retention curve (θs and α). Small macroaggregates accounted for most of the soil mass and were significantly higher in FL but lower in AL for the 0–50 cm of the soil samples. The FC, CMC, and Ks decreased, but the BD increased with the soil depth across the three land-use types. In addition, the soil in AL had a higher BD but lower CMC and Ks than the soil in FL and SL for most soil depths. These results indicated that land use can influence the variation in soil physical and hydraulic properties within the 0–100 cm soil depth, and agricultural use is a major reason for soil degradation in this black soil region.


2010 ◽  
Vol 36 (3) ◽  
pp. 328-344 ◽  
Author(s):  
Xixi Wang ◽  
Shiyou Shang ◽  
Wanhong Yang ◽  
Calvin R. Clary ◽  
Dawen Yang

Sign in / Sign up

Export Citation Format

Share Document