Efficiency of indirect selection for grain yield in maize (Zea mays L.) under low nitrogen conditions through secondary traits under low nitrogen and grain yield under optimum conditions

Euphytica ◽  
2020 ◽  
Vol 216 (8) ◽  
Author(s):  
Berhanu Tadesse Ertiro ◽  
Michael Olsen ◽  
Biswanath Das ◽  
Manje Gowda ◽  
Maryke Labuschagne
1981 ◽  
Vol 61 (1) ◽  
pp. 29-36
Author(s):  
O. A. ADARA ◽  
L. W. KANNENBERG

Two cycles of S1 per se recurrent selection were conducted in four populations of corn (Zea mays L.). The primary selection criterion was a performance index: grain yield divided by percent moisture at harvest. The original (C0) source material and first cycle (C1) of selection for each population were evaluated in a favorable (1977) and an unfavorable (1978) growing season. Second cycle (C2) materials were also included in the 1978 comparisons. In 1977, C1 yielded significantly more grain than C0 in three of the four populations. In contrast, performance of C1 and C2 materials in 1978 was inferior to C0 in all populations but one. The advanced cycles of only one population showed improvement over C0 in both years. Comparisons of the 1977 data for days to silking, grain yield, and percent ear moisture at harvest suggest that rate of grain filling in C1 was higher than in C0 for all populations. The higher rates of grain filling in the advanced cycles may have caused a carbohydrate deficiency under stress (1978) so that the leaves no longer functioned normally and kernel filling was terminated prematurely. In general, the four populations showed inherent differences in their respective responses to selection, to environmental stress, and to inbreeding.


2016 ◽  
Vol 46 (5) ◽  
pp. 776-782 ◽  
Author(s):  
Maicon Nardino ◽  
Velci Queiróz de Souza ◽  
Diego Baretta ◽  
Valmor Antonio Konflanz ◽  
Ivan Ricardo Carvalho ◽  
...  

ABSTRACT: The objective was to identify phenotypic and genotypic associations, and cause-and-effect relations of secondary components on primary components to establish criteria in the indirect selection process for maize. Partial diallel crosses were conducted in Clevelândia. F1's were evaluated in five environments. For the purpose of increasing the yield of corn grain, breeders should seek to reduce the characters distance from the last node to the first branch of the tassel, tassel length and number of branches. The indirect selection for distance from the last node to the first branch of the tassel would be effective to increase the grain yield. The selection for smaller leaf angle, larger stem diameter and thousand grain weight are favorable for increasing grain yield in maize.


Crop Science ◽  
1969 ◽  
Vol 9 (3) ◽  
pp. 265-267 ◽  
Author(s):  
T. P. Singh ◽  
M. S. Zuber ◽  
G. F. Krause

2021 ◽  
Vol 9 (4) ◽  
pp. 870
Author(s):  
Muhammad Aammar Tufail ◽  
María Touceda-González ◽  
Ilaria Pertot ◽  
Ralf-Udo Ehlers

Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). A pot experiment was conducted whereby treatments consisted of maize plants cultivated under drought stress, in soil with a low nitrogen concentration and these two stress sources combined, with and without G. diazotrophicus seed inoculation. The inoculated plants showed increased plant biomass, chlorophyll content, plant nitrogen uptake, and water use efficiency. A general increase in copy numbers of G. diazotrophicus, based on 16S rRNA gene quantification, was detected under combined moderate stress, in addition to an increase in the abundance of genes involved in N fixation (nifH). Endophytic colonization of bacteria was negatively affected by severe stress treatments. Overall, G. diazotrophicus Pal5 can be considered as an effective tool to increase maize crop production under drought conditions with low application of nitrogen fertilizer.


Sign in / Sign up

Export Citation Format

Share Document