scholarly journals Evaluation of mass selection for grain yield and estimation of genetic variability in three selected maize (Zea mays L.) populations

1981 ◽  
Author(s):  
Mulamba Ngandu-Nyindu
2020 ◽  
Vol 5 (01) ◽  
pp. 45-49
Author(s):  
Ankit Kumar ◽  
Amit Tomar

The results revealed that parents namely, TSK-10, TSK-27, New Blue-II, Kurara and TSK-109 were found highly genetic diverse for days to 50% tasseling, days to 50% silking, days to 755 dry husk. The parents namely, TSK-109, Kurara, New Blue-II and TSK-10 were found highly genetic diverse for plant height (cm), cob height, number of cobs per plant and number of grains per cob. The parents namely, Kurara, TSK-109, TSK-10, New Blue-II and TSK-27 were found highly genetic diverse for shelling percentage, grain yield per plant, grain yield per cob and 100-grain weight.


1981 ◽  
Vol 61 (1) ◽  
pp. 29-36
Author(s):  
O. A. ADARA ◽  
L. W. KANNENBERG

Two cycles of S1 per se recurrent selection were conducted in four populations of corn (Zea mays L.). The primary selection criterion was a performance index: grain yield divided by percent moisture at harvest. The original (C0) source material and first cycle (C1) of selection for each population were evaluated in a favorable (1977) and an unfavorable (1978) growing season. Second cycle (C2) materials were also included in the 1978 comparisons. In 1977, C1 yielded significantly more grain than C0 in three of the four populations. In contrast, performance of C1 and C2 materials in 1978 was inferior to C0 in all populations but one. The advanced cycles of only one population showed improvement over C0 in both years. Comparisons of the 1977 data for days to silking, grain yield, and percent ear moisture at harvest suggest that rate of grain filling in C1 was higher than in C0 for all populations. The higher rates of grain filling in the advanced cycles may have caused a carbohydrate deficiency under stress (1978) so that the leaves no longer functioned normally and kernel filling was terminated prematurely. In general, the four populations showed inherent differences in their respective responses to selection, to environmental stress, and to inbreeding.


Author(s):  
F.Y. Baktash

This research  was undertaken to evaluate five cycles of modified mass selection to improve grain yield in synthetic corn (Zea mays L.) variety IPA-5018. The selection was carried out in spring and fall seasons, during, 2013-2015 using 10% selection intensity. The five  populations obtained after selection and the original population were evaluated. The experimental design was a randomized complete block design with five replications. The results were revealed a significant differences among selection cycles in grain yield and some yield components.  The cycle five produced highest grain yield (9699.30 kg.ha-1) and increased 34.88% to the original population. The regression of grain yield, number of grains.ear-1 and grain weight to selection cycles were significantly linear and R2 more than 80%. We  concluded that the  modified mass selection  could be used successfully in improving the grain yield and some yield components of  corn synthetic varieties.


2017 ◽  
Vol 15 (2) ◽  
pp. 193-198
Author(s):  
A Ferdoush ◽  
MA Haque ◽  
MM Rashid ◽  
MAA Bari

Maize (Zea mays L.) is world’s third most important cereal crop that has a remarkable productive potential in Bangladesh. In Bangladesh, maize is the second most important cereal crop in terms of production. The selection for high yield with desirable traits depends on the genetic variability in the existing germplasm. Successful breeding programs need adequate genetic variation for selection and improvement based on necessity. The research was conducted in the experimental farm of the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh during November 2015 to April 2016. The aim of this study was to evaluate the performance of 20 maize genotypes based on their yield and yield contributing characters to determine existing genetic variability. The extrapolated ANOVA for different yield contributing parameters showed a high degree of variation among the genotypes used. Correlation co-efficient analysis revealed that yield plant−1 (g) had positive and significant association with ear girth (cm), 1000-kernel weight (g), yield plot−1 (g), grain yield   (tha−1) with dry weight. The genotypes differed significantly for most of the phenotypic traits. The phenotypic co-efficient of variation (PCV) was higher than genotypic co-efficient of variation (GCV) in all traits studied indicating that those traits were interacted with the environment. The traits under study expressed wide heritability estimates (26.81% to 99.95%). Among the characters, highest heritability was recorded for 1000-kernel weight (g). High heritability along with high genetic advance was noticed for 1000-kernel weight (g), yield plot−1 (g)and grain yield (tha−1). Considering different desirable traits P-12, Popcorn, V90-1, 988 were observed as superior genotypes. The data would be useful for proper identification and selection of appropriate parents in breeding programs to develop new maize varieties.J. Bangladesh Agril. Univ. 15(2): 193-198, December 2017


Sign in / Sign up

Export Citation Format

Share Document