scholarly journals Invariant Subspaces for Commuting Operators on a Real Banach Space

2018 ◽  
Vol 52 (1) ◽  
pp. 53-56
Author(s):  
V. I. Lomonosov ◽  
V. S. Shul’man
2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Mihály Pituk

AbstractWe consider orbits of compact linear operators in a real Banach space which are nonnegative with respect to the partial ordering induced by a given cone. The main result shows that under a mild additional assumption the local spectral radius of a nonnegative orbit is an eigenvalue of the operator with a positive eigenvector.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yuanheng Wang

In the framework of a real Banach space with uniformly Gateaux differentiable norm, some new viscosity iterative sequences{xn}are introduced for an infinite family of asymptotically nonexpansive mappingsTii=1∞in this paper. Under some appropriate conditions, we prove that the iterative sequences{xn}converge strongly to a common fixed point of the mappingsTii=1∞, which is also a solution of a variational inequality. Our results extend and improve some recent results of other authors.


2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


2020 ◽  
Vol 12 (2) ◽  
pp. 412-418
Author(s):  
M.I. Dmytryshyn

We give the estimates of approximation errors while approximating of a positive operator $A$ in a Banach space by analytic vectors. Our main results are formulated in the form of Bernstein and Jackson type inequalities with explicitly calculated constants. We consider the classes of invariant subspaces ${\mathcal E}_{q,p}^{\nu,\alpha}(A)$ of analytic vectors of $A$ and the special scale of approximation spaces $\mathcal {B}_{q,p,\tau}^{s,\alpha}(A)$ associated with the complex degrees of positive operator. The approximation spaces are determined by $E$-functional, that plays a similar role as the module of smoothness. We show that the approximation spaces can be considered as interpolation spaces generated by $K$-method of real interpolation. The constants in the Bernstein and Jackson type inequalities are expressed using the normalization factor.


2020 ◽  
Vol 21 (2) ◽  
pp. 397-412 ◽  
Author(s):  
H.A. Abass ◽  
◽  
C. Izuchukwu ◽  
O.T. Mewomo ◽  
Q.L. Dong ◽  
...  

2017 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
AHMED H. SOLIMAN ◽  
MOHAMMAD IMDAD ◽  
MD AHMADULLAH

In this paper, we consider a new uniformly generalized Kannan type semigroup of self-mappings defined on a closed convex subset of a real Banach space equipped with uniform normal structure and employ the same to show that such semigroup of self-mappings admits a common fixed point provided the underlying semigroup of self-mappings has a bounded orbit.


2012 ◽  
Vol 20 (1) ◽  
pp. 329-344
Author(s):  
Sheng Hua Wang ◽  
Sun Young Cho ◽  
Xiao Long Qin

Abstract The purpose of this paper is to consider the problem of approximating zero points of accretive operators. We introduce and analysis Mann-type iterative algorithm with errors and Halpern-type iterative algorithms with errors. Weak and strong convergence theorems are established in a real Banach space. As applications, we consider the problem of approximating a minimizer of a proper lower semicontinuous convex function in a real Hilbert space


1974 ◽  
Vol s3-28 (4) ◽  
pp. 654-670
Author(s):  
C. M. Edwards

2016 ◽  
Vol 213 (6) ◽  
pp. 823-831
Author(s):  
E. E. Dikarev ◽  
D. M. Polyakov

Sign in / Sign up

Export Citation Format

Share Document