Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies

2016 ◽  
Vol 15 (4) ◽  
pp. 553-562 ◽  
Author(s):  
Masakazu Kohda ◽  
Kensuke Kumamoto ◽  
Hidetaka Eguchi ◽  
Tomoko Hirata ◽  
Yuhki Tada ◽  
...  
Author(s):  
Stella C. Yuan ◽  
Eric Malekos ◽  
Melissa T. R. Hawkins

AbstractThe use of museum specimens held in natural history repositories for population and conservation genetic research is increasing in tandem with the use of massively parallel sequencing technologies. Short Tandem Repeats (STRs), or microsatellite loci, are commonly used genetic markers in wildlife and population genetic studies. However, they traditionally suffered from a host of issues including length homoplasy, high costs, low throughput, and difficulties in reproducibility across laboratories. Massively parallel sequencing technologies can address these problems, but the incorporation of museum specimen derived DNA suffers from significant fragmentation and exogenous DNA contamination. Combatting these issues requires extra measures of stringency in the lab and during data analysis, yet there have not been any high-throughput sequencing studies evaluating microsatellite allelic dropout from museum specimen extracted DNA. In this study, we evaluate genotyping errors derived from mammalian museum skin DNA extracts for previously characterized microsatellites across PCR replicates utilizing high-throughput sequencing. We found it useful to classify samples based on DNA concentration, which determined the rate by which genotypes were accurately recovered. Longer microsatellites performed worse in all museum specimens. Allelic dropout rates across loci were dependent on sample quantity, with high concentration museum specimens performing as well and recovering quality metrics nearly as high as the frozen tissue sample. Based on our results, we provide a set of best practices for quality assurance and incorporation of reliable genotypes from museum specimens.


2019 ◽  
Author(s):  
Reneth Millas ◽  
Mary Espina ◽  
CM Sabbir Ahmed ◽  
Angelina Bernardini ◽  
Ekundayo Adeleke ◽  
...  

ABSTRACTOne of the most important tools in genetic improvement is mutagenesis, which is a useful tool to induce genetic and phenotypic variation for trait improvement and discovery of novel genes. JTN-5203 (MG V) mutant population was generated using an induced ethyl methane sulfonate (EMS) mutagenesis and was used for detection of induced mutations in FAD2-1A and FAD2-1B genes using reverse genetics approach. Optimum concentration of EMS was used to treat 15,000 bulk JTN-5203 seeds producing 1,820 M2 population. DNA was extracted, normalized, and pooled from these individuals. Specific primers were designed from FAD2-1A and FAD2-1B genes that are involved in the fatty acid biosynthesis pathway for further analysis using next-generation sequencing. High throughput mutation discovery through TILLING-by-Sequencing approach was used to detect novel allelic variations in this population. Several mutations and allelic variations with high impacts were detected for FAD2-1A and FAD2-1B. This includes GC to AT transition mutations in FAD2-1A (20%) and FAD2-1B (69%). Mutation density for this population is estimated to be about 1/136kb. Through mutagenesis and high-throughput sequencing technologies, novel alleles underlying the mutations observed in mutants with reduced polyunsaturated fatty acids will be identified, and these mutants can be further used in breeding soybean lines with improved fatty acid profile, thereby developing heart-healthy-soybeans.


2020 ◽  
Author(s):  
Wenbin Zhou ◽  
John Soghigian ◽  
Qiu-yun (Jenny) Xiang

ABSTRACTTarget enrichment and RAD-seq are well-established high throughput sequencing technologies that have been increasingly used for phylogenomic studies, and the choice between methods is a practical issue for plant systematists studying the evolutionary histories of biodiversity of relatively recent origins. However, few studies have compared the congruence and conflict between results from the two methods within the same group of organisms, especially in plants, where extensive genome duplication events may complicate phylogenomic analyses. Unfortunately, currently widely used pipelines for target enrichment data analysis do not have a vigorous procedure for remove paralogs in Hyb-Seq data. In this study, we employed RAD-seq and Hyb-Seq of Angiosperm 353 genes in phylogenomic and biogeographic studies of Hamamelis (the witch-hazels) and Castanea (chestnuts), two classic examples exhibiting the well-known eastern Asian-eastern North American disjunct distribution. We compared these two methods side by side and developed a new pipeline (PPD) with a more vigorous removal of putative paralogs from Hyb-Seq data. The new pipeline considers both sequence similarity and heterozygous sites at each locus in identification of paralogous. We used our pipeline to construct robust datasets for comparison between methods and downstream analyses on the two genera. Our results demonstrated that the PPD identified many more putative paralogs than the popular method HybPiper. Comparisons of tree topologies and divergence times showed significant differences between data from HybPiper and data from our new PPD pipeline, likely due to the error signals from the paralogous genes undetected by HybPiper, but trimmed by PPD. We found that phylogenies and divergence times estimated from our RAD-seq and Hyb-Seq-PPD were largely congruent. We highlight the importance of removal paralogs in enrichment data, and discuss the merits of RAD-seq and Hyb-Seq. Finally, phylogenetic analyses of RAD-seq and Hyb-Seq resulted in well-resolved species relationships, and revealed ancient introgression in both genera. Biogeographic analyses including fossil data revealed a complicated history of each genus involving multiple intercontinental dispersals and local extinctions in areas outside of the taxa’s modern ranges in both the Paleogene and Neogene. Our study demonstrates the value of additional steps for filtering paralogous gene content from Angiosperm 353 data, such as our new PPD pipeline described in this study. [RAD-seq, Hyb-Seq, paralogs, Castanea, Hamamelis, eastern Asia-eastern North America disjunction, biogeography, ancient introgression]


Author(s):  
AA Kliuchnikova ◽  
SA Moshkovskii

Adenosine-to-inosine (A-to-I) RNA editing is a common mechanism of post-transcriptional modification in many metazoans including vertebrates; the process is catalyzed by adenosine deaminases acting on RNA (ADARs). Using high-throughput sequencing technologies resulted in finding thousands of RNA editing sites throughout the human transcriptome however, their functions are still poorly understood. The aim of this brief review is to draw attention of clinicians and biomedical researchers to ADAR-mediated RNA editing phenomenon and its possible implication in development of neuropathologies, antiviral immune responses and cancer.


Gene ◽  
2013 ◽  
Vol 528 (2) ◽  
pp. 347-351 ◽  
Author(s):  
Makio Kihana ◽  
Fuzuki Mizuno ◽  
Rikai Sawafuji ◽  
Li Wang ◽  
Shintaroh Ueda

Author(s):  
Yuansheng Liu ◽  
Xiaocai Zhang ◽  
Quan Zou ◽  
Xiangxiang Zeng

Abstract Summary Removing duplicate and near-duplicate reads, generated by high-throughput sequencing technologies, is able to reduce computational resources in downstream applications. Here we develop minirmd, a de novo tool to remove duplicate reads via multiple rounds of clustering using different length of minimizer. Experiments demonstrate that minirmd removes more near-duplicate reads than existing clustering approaches and is faster than existing multi-core tools. To the best of our knowledge, minirmd is the first tool to remove near-duplicates on reverse-complementary strand. Availability and implementation https://github.com/yuansliu/minirmd. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document