Accuracy assessment of a three-dimensional, crack tip element based approach for predicting delamination growth in stiffened-skin geometries

2005 ◽  
Vol 132 (1) ◽  
pp. 1-32 ◽  
Author(s):  
Barry D. Davidson ◽  
Lijie Yu ◽  
Sean D. Lundberg ◽  
Lakshman M. Rao
AIAA Journal ◽  
1993 ◽  
Vol 31 (11) ◽  
pp. 2130-2136 ◽  
Author(s):  
Barry D. Davidson ◽  
Todd M. Krafchak

2005 ◽  
Vol 58 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Alan T. Zehnder ◽  
Mark J. Viz

The fracture mechanics of plates and shells under membrane, bending, twisting, and shearing loads are reviewed, starting with the crack tip fields for plane stress, Kirchhoff, and Reissner theories. The energy release rate for each of these theories is calculated and is used to determine the relation between the Kirchhoff and Reissner theories for thin plates. For thicker plates, this relationship is explored using three-dimensional finite element analysis. The validity of the application of two-dimensional (plate theory) solutions to actual three-dimensional objects is analyzed and discussed. Crack tip fields in plates undergoing large deflection are analyzed using von Ka´rma´n theory. Solutions for cracked shells are discussed as well. A number of computational methods for determining stress intensity factors in plates and shells are discussed. Applications of these computational approaches to aircraft structures are examined. The relatively few experimental studies of fracture in plates under bending and twisting loads are also reviewed. There are 101 references cited in this article.


Author(s):  
T. Guo ◽  
A. Capra ◽  
M. Troyer ◽  
A. Gruen ◽  
A. J. Brooks ◽  
...  

Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.


Sign in / Sign up

Export Citation Format

Share Document