delamination growth
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 52)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
pp. 002199832110567
Author(s):  
Felipe P Garpelli ◽  
Francis M González Ramírez ◽  
Rita de Cássia M Sales ◽  
Mariano A Arbelo ◽  
Marcos Y Shiino ◽  
...  

In this article, the structural behavior of co-cured composite joint (CC), co-bonded composite joint (CB), and secondary-bonded composite joint (SB) under Mode II fatigue loading was evaluated. Fatigue performance was evaluated in sub-critical strain energy release rate (SERR) associated with Mode II fatigue induced delamination growth onset. Fatigue tests were carried out using the three-point bending End Notched Flexure test setup for different energy ratios. The experimental results are presented in terms of SERR versus number of cycles, and the SERR threshold for no growth is determined (Gth). Fractographic analyses were performed in order to identify the main failure mechanisms related to each joining technology under Mode II. The results indicated an initial cohesive failure followed by an adhesive failure promoted by crack propagation at the interface between the adhesive and the composite adherend on SB and CB samples, through the coalescence of microcracks that promote the adhesive failure process, leading to fiber pull-out from the matrix and cusps formation in the fracture surface. These results explain the low performance behavior observed on SB and CB bonded techniques. It is worth mentioning that the results and behavior observed in this work are valid only for the laminates, adhesives, surface treatment, and environmental conditions tested herein.


2021 ◽  
pp. 1-22
Author(s):  
Young-Woo Truong ◽  
Viet-Hoai Hoang ◽  
Van-Tho Choe ◽  
Hyeon-Seok Nam ◽  
Jin-Hwe Kweon

2021 ◽  
Vol 268 ◽  
pp. 113943
Author(s):  
Linfei Jiang ◽  
Yongxiang Zhang ◽  
Yu Gong ◽  
Wangchang Li ◽  
Sue Ren ◽  
...  

Author(s):  
K. S. Vishwanath

The FRP laminates are widely implemented in aviation industry due to its advantages and applications other materials in terms of strength to weight ratio, design features and many more. The strength of the interface compared to longitudinal and lateral directions of the plies are comparatively less and give rise too poor transverse direction strength. Hence a failure mechanism called delamination will occur in case when tools are dropped or due to poor manufacturing which would give rise to interface delamination. In this paper, VCCT is employed at the interface between base and sub laminate to investigate for a circular shape delamination geometry of 60mm buckling driven delamination growth with variations in temperature for -20C, room temperature, 523C, 773C and 1273C. The computational prediction of delamination growth initiation is obtained by solving a CFRP specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate versus inplane strains and inplane loads versus compressive strains.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength to weight ratio, manufacturing flexibility and so on. But in the transverse direction, strength is comparatively less so that a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of thrust to weight ratio, strength to weight ratio, manufacturing benefits such as tailoring, resistance to erosion and corrosion and so on. In the transverse direction, strength, stiffness and stability are comparatively less so that a failure mechanism called interface delamination comes into picture due to poor manufacturing or when tools are dropped that would create an impact load. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm square embedded buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates are widely implemented in aviation industry due to its advantages and applications other materials in terms of strength to weight ratio, dsign features and many more. The strength of the interface compared to longitudinal and lateral directions of the plies are comparatively less and give rise too poor transverse direction strength. Hence a failure mechanism called delamination will occur in case when tools are dropped or due to poor manufacturing which would give rise to interface delamination. In this paper, VCCT is employed at the interface between base and sub laminate to investigate for a square shape delamination geometry of 20mm buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a T300/976 specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate at the delamination geometry.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength, stiffness, stability, weight saving features, resistance to corrosion and erosion and many more. But due to poor transverse direction strength, a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped which would make an impact. In this paper, VCCT is implemented at the interface between base and sub laminate to investigate for 20mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a T300/976 specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate at the edge of delamination geometry.


Sign in / Sign up

Export Citation Format

Share Document