Journal of Physics Photonics
Latest Publications


TOTAL DOCUMENTS

237
(FIVE YEARS 228)

H-INDEX

7
(FIVE YEARS 6)

Published By Iop Publishing

2515-7647

Author(s):  
Randy Lemons ◽  
Sergio Carbajo

Abstract In the context of diffractive optics, phase retrieval is a heavily investigated process of recreating an entire complex electric field from partial amplitude-only information through iterative algorithms. However, existing methods can fall into local minima during reconstructions or struggle to recover unusual and novel electric field distributions. We present a numerical method based on a global-optimization genetic algorithm that reconstructs non-trivial electric field distributions from single diffracted intensity distributions. Diffraction and propagation of the optical fields over arbitrary distances is modeled through implementation of the angular spectrum technique. Additionally, a coherently-locked laser array system is used as an experimental case-study demonstrating $0.09 \pi$ phase reconstruction accuracy of initial laser parameters from single intensity images.


Author(s):  
Christoph Michael Heyl ◽  
Marcus Seidel ◽  
Esmerando Escoto ◽  
Arthur Schönberg ◽  
Stefanos Carlström ◽  
...  

Abstract Multi-pass cells have emerged as very attractive tools for spectral broadening and post-compression applications. We discuss pulse energy limitations of standard multi-pass cells considering basic geometrical scaling principles and introduce a novel energy scaling method using a multi-pass cell arranged in a bow tie geometry. Employing nonlinear pulse propagation simulations, we numerically demonstrate the compression of 125mJ, 1 ps pulses to 50 fs using a compact 2 m long setup and outline routes to extend our approach into the Joule-regime.


Author(s):  
Nicolas Linale ◽  
Pablo I. Fierens ◽  
Nathalie Vermeulen ◽  
Diego Fernando Grosz

Abstract We study supercontinuum generation (SC) in graphene-covered nanowires based on a generic model that correctly accounts for the evolution of the photon number under Kerr and two-photon absorption processes, and the influence of graphene is treated within the framework of saturable photoexcited-carrier refraction. We discuss the role of the various effects on the generation of supercontinuum by a thorough analysis of short-pulse propagation in two different kinds of graphene-covered nanowires, one made of silicon nitride and the other made of silicon. Finally, we discuss the effect of stacking graphene layers as a means to enhance SC generation with pulse powers compatible with those in integrated optical devices.


Author(s):  
Xinzhen Ji ◽  
Zhuangzhuang Ma ◽  
Xu Chen ◽  
Di Wu ◽  
Yongtao Tian ◽  
...  

Abstract Recently, non-toxic alternatives to lead-halide perovskites have been greatly sought after in optoelectronics applications. Deep-blue luminescent material is mainly required for fabricating white light source and expanding the color gamut of full-color displays. However, the synthesis of high-performance lead-free perovskite films with efficient blue emission is still a critical challenge currently, limiting their further practical applications. Here, a novel strategy is reported to prepare non-toxic and deep-blue-emitting K2CuBr3 nanocrystalline films by introducing polymer poly(methyl methacrylate) (PMMA) additives into the anti-solvent. It is found that the PMMA additives could effectively reduce the grain size and improve the crystallinity of K2CuBr3 films, resulting in an enhanced radiative recombination by defect passivation and confinement of excitons in the nanograins. As a result, the PMMA-treated K2CuBr3 films achieve a bright deep-blue light with color coordinates at (0.155, 0.042), and the photoluminescence quantum yield obtained is about 3.3 times that of the pristine sample. Moreover, the treated K2CuBr3 films exhibit a substantially enhanced stability under harsh environmental conditions, maintaining >70% of their initial performances in high humidity environment (50‒70% humidity, 190 h) or under uninterrupted ultraviolet light radiation (254 nm, 3.4 mW/cm2, 150 h). These findings pave a promising strategy for achieving efficient and stable deep-blue metal halide films, showing their potential applications in optoelectronic devices.


Author(s):  
Monika Pawlowska ◽  
Ron Tenne ◽  
Bohnishikha Ghosh ◽  
Adrian Makowski ◽  
Radek Lapkiewicz

Abstract Super-resolution microscopy techniques have pushed the limits of resolution in optical imaging by more than an order of magnitude. However, these methods often require long acquisition times as well as complex setups and sample preparation protocols. Super-resolution Optical Fluctuation Imaging (SOFI) emerged over ten years ago as an approach that exploits temporal and spatial correlations within the acquired images to obtain increased resolution with less strict requirements. This review follows the progress of SOFI from its first demonstration to the development of a branch of methods that treat fluctuations as a source of contrast, rather than noise. Among others, we highlight the implementation of SOFI with standard fluorescent proteins as well as the microscope modification that facilitate 3D imaging and the application of modern cameras. Going beyond the classical framework of SOFI, we explore different innovative concepts from deep neural networks all the way to a quantum analogue of SOFI, antibunching microscopy. While SOFI has not reached the same level of ubiquity as other super-resolution methods, our overview finds significant progress and substantial potential for the concept of leveraging fluorescence fluctuations to obtain super-resolved images.


Author(s):  
Fiona Thorburn ◽  
Xin Yi ◽  
Zoe Greener ◽  
Jaroslaw Kirkoda ◽  
Ross Millar ◽  
...  

Abstract Germanium-on-Silicon (Ge-on-Si) based single-photon avalanche diodes (SPADs) have recently emerged as a promising detector candidate for ultra-sensitive and picosecond resolution timing measurement of short-wave infrared (SWIR) photons. Many applications benefit from operating in the SWIR spectral range, such as long distance Light Detection and Ranging (LiDAR), however, there are few single-photon detectors exhibiting the high-performance levels obtained by all-silicon SPADs commonly used for single-photon detection at wavelengths < 1 μm. This paper first details the advantages of operating at SWIR wavelengths, the current technologies, and associated issues, and describes the potential of Ge-on-Si SPADs as a single-photon detector technology for this wavelength region. The working principles, fabrication and characterisation processes of such devices are subsequently detailed. We review the research in these single-photon detectors and detail the state-of-the-art performance. Finally, the challenges and future opportunities offered by Ge-on-Si SPAD detectors are discussed.


Author(s):  
Terry Wright ◽  
Hugh Sparks ◽  
Carl Paterson ◽  
Christopher Dunsby
Keyword(s):  

2021 ◽  
Vol 3 (4) ◽  
pp. 044001
Author(s):  
A A Lanin ◽  
A S Chebotarev ◽  
I V Kelmanson ◽  
M S Pochechuev ◽  
E S Fetisova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document