scholarly journals Gravity Variations and Ground Deformations Resulting from Core Dynamics

Author(s):  
Mathieu Dumberry ◽  
Mioara Mandea

Abstract Fluid motion within the Earth’s liquid outer core leads to internal mass redistribution. This occurs through the advection of density anomalies within the volume of the liquid core and by deformation of the solid boundaries of the mantle and inner core which feature density contrasts. It also occurs through torques acting on the inner core reorienting its non-spherical shape. These in situ mass changes lead to global gravity variations, and global deformations (inducing additional gravity variations) occur in order to maintain the mechanical equilibrium of the whole Earth. Changes in Earth’s rotation vector (and thus of the global centrifugal potential) induced by core flows are an additional source of global deformations and associated gravity changes originating from core dynamics. Here, we review how each of these different core processes operates, how gravity changes and ground deformations from each could be reconstructed, as well as ways to estimate their amplitudes. Based on our current understanding of core dynamics, we show that, at spherical harmonic degree 2, core processes contribute to gravity variations and ground deformations that are approximately a factor 10 smaller than those observed and caused by dynamical processes within the fluid layers at the Earth’s surface. The larger the harmonic degree, the smaller is the contribution from the core. Extracting a signal of core origin requires the accurate removal of all contributions from surface processes, which remains a challenge. Article Highlights Dynamical processes in Earth's fluid core lead to global gravity variations and surface ground deformations We review how these processes operate, how signals of core origin can be reconstructed and estimate their amplitudes Core signals are a factor 10 smaller than the observed signals; extracting a signal of core origin remains a challenge

2018 ◽  
Vol 216 (1) ◽  
pp. 123-129 ◽  
Author(s):  
R J Teed ◽  
C A Jones ◽  
S M Tobias

SUMMARY Turbulence and waves in Earth’s iron-rich liquid outer core are believed to be responsible for the generation of the geomagnetic field via dynamo action. When waves break upon the mantle they cause a shift in the rotation rate of Earth’s solid exterior and contribute to variations in the length-of-day on a ∼6-yr timescale. Though the outer core cannot be probed by direct observation, such torsional waves are believed to propagate along Earth’s radial magnetic field, but as yet no self-consistent mechanism for their generation has been determined. Here we provide evidence of a realistic physical excitation mechanism for torsional waves observed in numerical simulations. We find that inefficient convection above and below the solid inner core traps buoyant fluid forming a density gradient between pole and equator, similar to that observed in Earth’s atmosphere. Consequently, a shearing jet stream—a ‘thermal wind’—is formed near the inner core; evidence of such a jet has recently been found. Owing to the sharp density gradient and influence of magnetic field, convection at this location is able to operate with the turnover frequency required to generate waves. Amplified by the jet it then triggers a train of oscillations. Our results demonstrate a plausible mechanism for generating torsional waves under Earth-like conditions and thus further cement their importance for Earth’s core dynamics.


2019 ◽  
Vol 104 (11) ◽  
pp. 1603-1607 ◽  
Author(s):  
Kenta Oka ◽  
Kei Hirose ◽  
Shoh Tagawa ◽  
Yuto Kidokoro ◽  
Yoichi Nakajima ◽  
...  

Abstract We performed melting experiments on Fe-O alloys up to 204 GPa and 3500 K in a diamond-anvil cell (DAC) and determined the liquidus phase relations in the Fe-FeO system based on textural and chemical characterizations of recovered samples. Liquid-liquid immiscibility was observed up to 29 GPa. Oxygen concentration in eutectic liquid increased from >8 wt% O at 44 GPa to 13 wt% at 204 GPa and is extrapolated to be about 15 wt% at the inner core boundary (ICB) conditions. These results support O-rich liquid core, although oxygen cannot be a single core light element. We estimated the range of possible liquid core compositions in Fe-O-Si-C-S and found that the upper bounds for silicon and carbon concentrations are constrained by the crystallization of dense inner core at the ICB.


1991 ◽  
Vol 127 ◽  
pp. 250-253
Author(s):  
Sergei Diakonov

While calculating low frequency oscillations of the Earth liquid core spherical harmonic representation of the deformation field is usually used [1-3]:Substitution of (1) into the equations of motion gives an infinite system of differential equations for scalar functions Sɭm and Tɭm . Approximate solutions of such a system are obtained by truncating of the system. But results of [4] show that sometimes such method divergences.


1991 ◽  
Vol 96 (B5) ◽  
pp. 8243 ◽  
Author(s):  
P. M. Mathews ◽  
B. A. Buffett ◽  
T. A. Herring ◽  
I. I. Shapiro

2020 ◽  
Author(s):  
Nannan Qin ◽  
Da-Lin Zhang ◽  
William Miller ◽  
Chanh Kieu

<p>Recent studies show that some hurricanes may undergo rapid intensification (RI) without contracting the radius of maximum wind (RMW). A cloud-resolving WRF-prediction of Hurricane Wilma (2005) is used herein to examine what controls the RMW contraction and how a hurricane could undergo RI without contraction. Results show that the processes controlling the RMW contraction are different within and above the planetary boundary layer (PBL). In the PBL, radial inflows contribute to contraction, with frictional dissipation acting as an inhibiting factor. Above the PBL, radial outflows and vertical motion govern the RMW contraction, with the former inhibiting it. A budget analysis of absolute angular momentum (AAM) shows that the radial AAM flux convergence is the major process accounting for the spinup of the maximum rotation, while the vertical flux divergence of AAM and the frictional sink in the PBL oppose the spinup. During the RI stage with no RMW contraction, the local AAM tendencies in the eyewall are smaller in magnitude and narrower in width than those during the contracting RI stage. In addition, the AAM following the time-dependent RMW decreases with time in the PBL and remains nearly constant aloft during the contracting stage, whereas it increases during the non-contracting stage. These results reveal different constraints for the RMW contraction and RI, and help explain why a hurricane vortex can still intensify after the RMW ceases contraction</p>


2022 ◽  
pp. 215-246
Author(s):  
Vernon F. Cormier ◽  
Michael I. Bergman ◽  
Peter L. Olson
Keyword(s):  

1991 ◽  
Vol 96 (B5) ◽  
pp. 8219 ◽  
Author(s):  
P. M. Mathews ◽  
B. A. Buffett ◽  
T. A. Herring ◽  
I. I. Shapiro
Keyword(s):  

2009 ◽  
Vol 176 (2) ◽  
pp. 368-388 ◽  
Author(s):  
Yves Rogister ◽  
Bernard Valette
Keyword(s):  

1975 ◽  
Vol 116 (1) ◽  
pp. 177-181
Author(s):  
Aimo Kiviniemi

Sign in / Sign up

Export Citation Format

Share Document