scholarly journals Torsional waves driven by convection and jets in Earth’s liquid core

2018 ◽  
Vol 216 (1) ◽  
pp. 123-129 ◽  
Author(s):  
R J Teed ◽  
C A Jones ◽  
S M Tobias

SUMMARY Turbulence and waves in Earth’s iron-rich liquid outer core are believed to be responsible for the generation of the geomagnetic field via dynamo action. When waves break upon the mantle they cause a shift in the rotation rate of Earth’s solid exterior and contribute to variations in the length-of-day on a ∼6-yr timescale. Though the outer core cannot be probed by direct observation, such torsional waves are believed to propagate along Earth’s radial magnetic field, but as yet no self-consistent mechanism for their generation has been determined. Here we provide evidence of a realistic physical excitation mechanism for torsional waves observed in numerical simulations. We find that inefficient convection above and below the solid inner core traps buoyant fluid forming a density gradient between pole and equator, similar to that observed in Earth’s atmosphere. Consequently, a shearing jet stream—a ‘thermal wind’—is formed near the inner core; evidence of such a jet has recently been found. Owing to the sharp density gradient and influence of magnetic field, convection at this location is able to operate with the turnover frequency required to generate waves. Amplified by the jet it then triggers a train of oscillations. Our results demonstrate a plausible mechanism for generating torsional waves under Earth-like conditions and thus further cement their importance for Earth’s core dynamics.

Author(s):  
A.A Bachtiar ◽  
D.J Ivers ◽  
R.W James

The Earth's main magnetic field is generally believed to be due to a self-exciting dynamo process in the Earth's fluid outer core. A variety of antidynamo theorems exist that set conditions under which a magnetic field cannot be indefinitely maintained by dynamo action against ohmic decay. One such theorem, the Planar Velocity Antidynamo Theorem , precludes field maintenance when the flow is everywhere parallel to some plane, e.g. the equatorial plane. This paper shows that the proof of the Planar Velocity Theorem fails when the flow is confined to a sphere, due to diffusive coupling at the boundary. Then, the theorem reverts to a conjecture. There is a need to either prove the conjecture, or find a functioning planar velocity dynamo. To the latter end, this paper formulates the toroidal–poloidal spectral form of the magnetic induction equation for planar flows, as a basis for a numerical investigation. We have thereby determined magnetic field growth rates associated with various planar flows in spheres. For most flows, the induced magnetic field decays with time, supporting a planar velocity antidynamo conjecture for a spherical conducting fluid. However, one flow is exceptional, indicating that magnetic field growth can occur. We also re-examine some classical kinematic dynamo models, converting the flows where possible to planar flows. For the flow of Pekeris et al . (Pekeris, C. L., Accad, Y. & Shkoller, B. 1973 Kinematic dynamos and the Earth's magnetic field. Phil. Trans. R. Soc. A 275 , 425–461), this conversion dramatically reduces the critical magnetic Reynolds number.


2019 ◽  
Vol 104 (11) ◽  
pp. 1603-1607 ◽  
Author(s):  
Kenta Oka ◽  
Kei Hirose ◽  
Shoh Tagawa ◽  
Yuto Kidokoro ◽  
Yoichi Nakajima ◽  
...  

Abstract We performed melting experiments on Fe-O alloys up to 204 GPa and 3500 K in a diamond-anvil cell (DAC) and determined the liquidus phase relations in the Fe-FeO system based on textural and chemical characterizations of recovered samples. Liquid-liquid immiscibility was observed up to 29 GPa. Oxygen concentration in eutectic liquid increased from >8 wt% O at 44 GPa to 13 wt% at 204 GPa and is extrapolated to be about 15 wt% at the inner core boundary (ICB) conditions. These results support O-rich liquid core, although oxygen cannot be a single core light element. We estimated the range of possible liquid core compositions in Fe-O-Si-C-S and found that the upper bounds for silicon and carbon concentrations are constrained by the crystallization of dense inner core at the ICB.


1979 ◽  
Vol 82 ◽  
pp. 313-314
Author(s):  
S. Takagi

There have been many papers discussing the rotation of the Earth (Jeffreys and Vicente, 1957; Molodenskij, 1961; Rochester, 1973; Smith, 1974; Shen and Mansinha, 1976). This report summarizes the application of the perturbation method of celestial mechanics to calculate the rotation of the Earth (Takagi, 1978). In this solution the Earth is assumed to consist of three components: a mantle, liquid outer core, and a solid inner core, each having a separate rotational velocity vector. Hamiltonian equations of motion were constructed to solve the rotational motion of the Earth.


The Bullard—Gellman formalism is applied to investigate the existence of convergent solutions for steady kinematic dynamos. It is found that the solutions for the Bullard—Gellman dynamo, as well as for Lilley’s modification of it, do not converge. Convergent solutions have been found for a class of spherical convective cells which would be stationary in a perfect fluid in the absence of rotation and of the magnetic field. By calibrating the theoretical magnetic dipole so as to fit the observed value at the Earth’s surface, one can find a dynamo in the above class which also matches the observed equatorial magnetic dipoles. There is a dynamo which has a rate of total ohmic dissipation of only 1.8 x 1016 erg s-1 for an assumed electrical conductivity of 3 x 10~6 e.m.u.'f This is one thousandth the rate of tidal dissipation, and one hundred thousandth the rate of heat outflow from the surface of the Earth. The required velocities are of the order of 10~3 cm s_1, and the average magnetic energy density is 4 erg cm-3. The internal structure of the magnetic field in this model shows a dynamo mechanism situated in the outer part of the liquid core and is thus insensitive to possible rigidity of the material in the * inner core.


2019 ◽  
Vol 629 ◽  
pp. A125 ◽  
Author(s):  
J. Wicht ◽  
T. Gastine ◽  
L. D. V. Duarte ◽  
W. Dietrich

The new data delivered by NASA’s Juno spacecraft significantly increase our understanding of the internal dynamics of Jupiter. The gravity data constrain the depth of the zonal flows observed at cloud level and suggest that they slow down considerably at a depth of about 0.96 rJ, where rJ is the mean radius at the one bar level. The magnetometer onboard Juno reveals the internal magnetic field of the planet. We combine the new zonal flow and magnetic field models with an updated electrical conductivity profile to assess the zonal-wind-induced dynamo action, concentrating on the outer part of the molecular hydrogen region of Jupiter where the conductivity increases very rapidly with depth. Dynamo action remains quasi-stationary and can therefore reasonably be estimated where the magnetic Reynolds number remains smaller than one, which is roughly the region above 0.96 rJ. We calculate that the locally induced radial magnetic field reaches rms values of about 10−6 T in this region and may just be detectable by the Juno mission. Very localized dynamo action and a distinct pattern that reflects the zonal wind system increases the chance to disentangle this locally induced field from the background field. The estimates of the locally induced currents also allow calculation of the zonal-flow-related Ohmic heating and associated entropy production. The respective quantities remain below new revised predictions for the total dissipative heating and total entropy production in Jupiter for any of the explored model combinations. Thus, neither Ohmic heating nor entropy production offer additional constraints on the depth of the zonal winds.


2020 ◽  
Author(s):  
Janneke de Jong ◽  
Lennart de Groot ◽  
Arwen Deuss

<p>The release of latent heat and lighter materials during inner core solidification is the driving force of the liquid iron flow in the outer core which generates the Earth's magnetic field. It is well known that the behaviour of the magnetic field varies over long time scales. Two clearly identifiable regimes are recognized, (i) superchrons and (ii) periods of hyperactivity (Biggin et al. 2012). Superchrons are characterized by an exceptionally low reversal rate of the magnetic pole and are associated with a low core mantle boundary (CMB) heat flux. Hyperactive periods are defined by a high reversal rate and have a high CMB heat flux.</p><p>Here we investigate whether the occurrence of these two regimes is related to radial variations in inner core seismic structure. Using seismic body-wave observations of compressional PKIKP-waves (Irving & Deuss 2011, Waszek & Deuss 2011, Lythgoe et al. 2013)., we construct a model of inner core anisotropy by comparing the difference between travel times for polar and equatorial rays. Anisotropy is the directional dependence of wave velocity and is determined by the structure of iron crystals in the inner core, hence changes in seismic anisotropy are due to changes in inner core crystal texture. We invert for radial changes in anisotropy while allowing for lateral variations and find that a model of the inner core containing five layers best fits our data. The model contains an isotropic uppermost inner core and four deeper layers with varying degrees of anisotropy.</p><p>Texture differences of the inner core iron crystals have been linked to changes in the solidification process of the inner core (Bergman et al. 2005), i.e. the motor of outer core flow. Therefore, the observed anisotropy variation, caused by variations of inner core solidification, might be related to changes in the behaviour of the magnetic field. Using an inner core growth model (Buffett et al. 1996) we convert depth to time for a range of inner core nucleation ages between 3.0 and 0.5 Ga (Olsen 2016). We find a remarkable correlation between the solidification time of the seismically observed layers and the occurrence of the magnetic regimes for two inner core ages; one with a nucleation at 1.4 Ga and one at 0.6 Ga, corresponding to an average CMB heat flux of 7.6 TW and 16.7 TW respectively.</p><p>Although we currently cannot differentiate between these two inner core ages considering our results alone, they do show that a relation between inner core structure and the behaviour of the magnetic field is possible, and suggest that seismic observations of inner core structure might provide new and independent insights into the magnetic field and its history.</p>


2018 ◽  
Vol 115 (44) ◽  
pp. 11186-11191 ◽  
Author(s):  
Hao Cao ◽  
Rakesh K. Yadav ◽  
Jonathan M. Aurnou

Observations of the Earth’s magnetic field have revealed locally pronounced field minima near each pole at the core–mantle boundary (CMB). The existence of the polar magnetic minima has long been attributed to the supposed large-scale overturning circulation of molten metal in the outer core: Fluid upwells within the inner core tangent cylinder toward the poles and then diverges toward lower latitudes when it reaches the CMB, where Coriolis effects sweep the fluid into anticyclonic vortical flows. The diverging near-surface meridional circulation is believed to advectively draw magnetic flux away from the poles, resulting in the low intensity or even reversed polar magnetic fields. However, the interconnections between polar magnetic minima and meridional circulations have not to date been ascertained quantitatively. Here, we quantify the magnetic effects of steady, axisymmetric meridional circulation via numerically solving the axisymmetric magnetohydrodynamic equations for Earth’s outer core under the magnetostrophic approximation. Extrapolated to core conditions, our results show that the change in polar magnetic field resulting from steady, large-scale meridional circulations in Earth’s outer core is less than 3% of the background field, significantly smaller than the ∼ 100% polar magnetic minima observed at the CMB. This suggests that the geomagnetic polar minima cannot be produced solely by axisymmetric, steady meridional circulations and must depend upon additional tangent cylinder dynamics, likely including nonaxisymmetric, time-varying processes.


2020 ◽  
Author(s):  
Irene Bonati ◽  
Marine Lasbleis ◽  
Lena Noack

<p>Most planets located within the solar system display evidence of past and/or current magnetic activity. Magnetic fields of rocky bodies are thought to be driven by thermo-chemical convection taking place in an electrically conducting fluid in their deep interior (the liquid outer core for Earth), and are thus evidence of strong internal dynamics. Furthermore, magnetism is thought to play a crucial role for the development and the long-term stability of habitable surface conditions, as it shields the upper atmosphere from mass loss induced by stellar winds and extreme space weather events.<span class="Apple-converted-space"> </span></p> <p>The discovery of a large number of rocky exoplanets motivates the search and the study of magnetic fields beyond the solar system. While current observations are limited to providing the planetary radius and minimum mass, future missions aimed at the exploration of exoplanetary atmospheres will open up new avenues for the inversion of interior properties starting from atmospheric parameters. Such a goal requires knowledge of the planetary cores and the development of exoplanetary magnetic fields, as well as their influence on atmospheric evolution and its interaction with the surrounding stellar wind.<span class="Apple-converted-space"> </span></p> <p>The aim of the current study is to identify trends and parameter(s) controlling the core evolution and magnetic field sustainment in super-Earths. To do this we investigate the evolution of the cores of planets having different masses (0.8-2 Earth masses) and iron inventories (bulk iron content and mantle iron number). Starting out from the internal temperature profile after the complete solidification of a global magma ocean (Noack and Lasbleis, 2020), we determine the size and the structure of the core, and model its thermal and magnetic evolution during the subsequent 5 billion years. By taking into account the energy release resulting from the growth of a solid inner core, we compute the thermal and compositional buoyancy fluxes, as well as the generated magnetic field strengths and lifetimes.<span class="Apple-converted-space"> </span></p> <p>Our findings show that while the planetary mass is not a controlling parameter, both the bulk iron content and the mantle iron number strongly influence inner core growth and the lifetime of the magnetic field. Iron-rich planets having a high mantle iron number tend to start out and end up with solid inner cores that are substantially larger than iron-poor bodies, sometimes even reaching up to the radius of the outer core and thus shutting down magnetic activity. We therefore find that there is a “sweet spot” for longer-lasting magnetic fields, located at intermediate bulk iron contents and low mantle iron numbers. <span class="Apple-converted-space"> </span></p> <p>We also varied the content of light elements in the core and found that the addition of a small fraction of light elements helps keeping the magnetic field active for longer, even at high bulk iron contents. Field strengths can reach up to several times the one of Earth, even though such a signal might still be too weak to be detected by current radio telescopes. Nevertheless, the development of new observation techniques and the multiple future missions devoted to atmospheric exploration will provide useful insights on the presence and frequency of planetary magnetic fields.</p>


2000 ◽  
Vol 179 ◽  
pp. 379-380
Author(s):  
Gaetano Belvedere ◽  
Kirill Kuzanyan ◽  
Dmitry Sokoloff

Extended abstractHere we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone. We calculate here a spatial 2-D structure of the mean magnetic field, adopting real profiles of the solar internal rotation (the Ω-effect) and an extended prescription of the turbulent α-effect. In our model assumptions we do not prescribe any meridional flow that might seriously affect the resulting generated magnetic fields. We do not assume apriori any region or layer as a preferred site for the dynamo action (such as the overshoot zone), but the location of the α- and Ω-effects results in the propagation of dynamo waves deep in the convection zone. We consider an axially symmetric magnetic field dynamo model in a differentially rotating spherical shell. The main assumption, when using asymptotic WKB methods, is that the absolute value of the dynamo number (regeneration rate) |D| is large, i.e., the spatial scale of the solution is small. Following the general idea of an asymptotic solution for dynamo waves (e.g., Kuzanyan & Sokoloff 1995), we search for a solution in the form of a power series with respect to the small parameter |D|–1/3(short wavelength scale). This solution is of the order of magnitude of exp(i|D|1/3S), where S is a scalar function of position.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christophe Pagnout ◽  
Angelina Razafitianamaharavo ◽  
Bénédicte Sohm ◽  
Céline Caillet ◽  
Audrey Beaussart ◽  
...  

AbstractToxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.


Sign in / Sign up

Export Citation Format

Share Document