Inner-core dynamics during the rapid intensification of Hurricane Wilma (2005) with a steady radius of the maximum wind

Author(s):  
Nannan Qin ◽  
Da-Lin Zhang ◽  
William Miller ◽  
Chanh Kieu

<p>Recent studies show that some hurricanes may undergo rapid intensification (RI) without contracting the radius of maximum wind (RMW). A cloud-resolving WRF-prediction of Hurricane Wilma (2005) is used herein to examine what controls the RMW contraction and how a hurricane could undergo RI without contraction. Results show that the processes controlling the RMW contraction are different within and above the planetary boundary layer (PBL). In the PBL, radial inflows contribute to contraction, with frictional dissipation acting as an inhibiting factor. Above the PBL, radial outflows and vertical motion govern the RMW contraction, with the former inhibiting it. A budget analysis of absolute angular momentum (AAM) shows that the radial AAM flux convergence is the major process accounting for the spinup of the maximum rotation, while the vertical flux divergence of AAM and the frictional sink in the PBL oppose the spinup. During the RI stage with no RMW contraction, the local AAM tendencies in the eyewall are smaller in magnitude and narrower in width than those during the contracting RI stage. In addition, the AAM following the time-dependent RMW decreases with time in the PBL and remains nearly constant aloft during the contracting stage, whereas it increases during the non-contracting stage. These results reveal different constraints for the RMW contraction and RI, and help explain why a hurricane vortex can still intensify after the RMW ceases contraction</p>

2015 ◽  
Vol 72 (10) ◽  
pp. 3829-3849 ◽  
Author(s):  
William Miller ◽  
Hua Chen ◽  
Da-Lin Zhang

Abstract The impacts of the latent heat of fusion on the rapid intensification (RI) of Hurricane Wilma (2005) are examined by comparing a 72-h control simulation (CTL) of the storm to a sensitivity simulation in which the latent heat of deposition is reduced by removing fusion heating (NFUS). Results show that, while both storms undergo RI, the intensification rate is substantially reduced in NFUS. At peak intensity, NFUS is weaker than CTL by 30 hPa in minimum central pressure and by 12 m s−1 in maximum surface winds. The reduced rate of surface pressure falls in NFUS appears to result hydrostatically from less upper-level warming in the eye. It is shown that CTL generates more inner-core convective bursts (CBs) during RI, with higher altitudes of peak vertical motion in the eyewall, compared to NFUS. The latent heat of fusion contributes positively to sufficient eyewall conditional instability to support CB updrafts. Slantwise soundings taken in CB updraft cores reveal moist adiabatic lapse rates until 200 hPa, where the updraft intensity peaks. These results suggest that CBs may impact hurricane intensification by inducing compensating subsidence of the lower-stratospheric air, and the authors conclude that the development of more CBs inside the upper-level radius of maximum wind and at the higher altitude of latent heating all appear to be favorable for the RI of Wilma.


Author(s):  
Alexander J. DesRosiers ◽  
Michael M. Bell ◽  
Ting-Yu Cha

AbstractThe landfall of Hurricane Michael (2018) at category 5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine learning techniques. TDR data from each pass were synthesized using the SAMURAI variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates the tendencies became more axisymmetric over time. In this study we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, that is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.


2013 ◽  
Vol 70 (1) ◽  
pp. 146-162 ◽  
Author(s):  
Hua Chen ◽  
Da-Lin Zhang

Abstract Previous studies have focused mostly on the roles of environmental factors in the rapid intensification (RI) of tropical cyclones (TCs) because of the lack of high-resolution data in inner-core regions. In this study, the RI of TCs is examined by analyzing the relationship between an upper-level warm core, convective bursts (CBs), sea surface temperature (SST), and surface pressure falls from 72-h cloud-permitting predictions of Hurricane Wilma (2005) with the finest grid size of 1 km. Results show that both the upper-level inertial stability increases and static stability decreases sharply 2–3 h prior to RI, and that the formation of an upper-level warm core, from the subsidence of stratospheric air associated with the detrainment of CBs, coincides with the onset of RI. It is found that the development of CBs precedes RI, but most subsidence warming radiates away by gravity waves and storm-relative flows. In contrast, many fewer CBs occur during RI, but more subsidence warming contributes to the balanced upper-level cyclonic circulation in the warm-core (as intense as 20°C) region. Furthermore, considerable CB activity can still take place in the outer eyewall as the storm weakens during its eyewall replacement. A sensitivity simulation, in which SSTs are reduced by 1°C, shows pronounced reductions in the upper-level warm-core intensity and CB activity. It is concluded that significant CB activity in the inner-core regions is an important ingredient in generating the upper-level warm core that is hydrostatically more efficient for the RI of TCs, given all of the other favorable environmental conditions.


2020 ◽  
Vol 77 (6) ◽  
pp. 2067-2090
Author(s):  
Satoki Tsujino ◽  
Hung-Chi Kuo

Abstract The inner-core dynamics of Supertyphoon Haiyan (2013) undergoing rapid intensification (RI) are studied with a 2-km-resolution cloud-resolving model simulation. The potential vorticity (PV) field in the simulated storm reveals an elliptical and polygonal-shaped eyewall at the low and middle levels during RI onset. The PV budget analysis confirms the importance of PV mixing at this stage, that is, the asymmetric transport of diabatically generated PV to the storm center from the eyewall and the ejection of PV filaments outside the eyewall. We employ a piecewise PV inversion (PPVI) and an omega equation to interpret the model results in balanced dynamics. The omega equation diagnosis suggests eye dynamical warming is associated with the PV mixing. The PPVI indicates that PV mixing accounts for about 50% of the central pressure fall during RI onset. The decrease of central pressure enhances the boundary layer (BL) inflow. The BL inflow leads to contraction of the radius of the maximum tangential wind (RMW) and the formation of a symmetric convective PV tower inside the RMW. The eye in the later stage of the RI is warmed by the subsidence associated with the convective PV towers. The results suggest that the pressure change associated with PV mixing, the increase of the symmetric BL radial inflow, and the development of a symmetric convective PV tower are the essential collaborating dynamics for RI. An experiment with 500-m resolution shows that the convergence of BL inflow can lead to an updraft magnitude of 20 m s−1 and to a convective PV tower with a peak value of 200 PVU (1 PVU = 10−6 K kg−1 m2 s−1).


2011 ◽  
Vol 26 (6) ◽  
pp. 885-901 ◽  
Author(s):  
Hua Chen ◽  
Da-Lin Zhang ◽  
James Carton ◽  
Robert Atlas

Abstract In this study, a 72-h cloud-permitting numerical prediction of Hurricane Wilma (2005), covering its initial 18-h spinup, an 18-h rapid intensification (RI), and the subsequent 36-h weakening stage, is performed using the Weather Research Forecast Model (WRF) with the finest grid length of 1 km. The model prediction uses the initial and lateral boundary conditions, including the bogus vortex, that are identical to the Geophysical Fluid Dynamics Laboratory’s then-operational data, except for the time-independent sea surface temperature field. Results show that the WRF prediction compares favorably in many aspects to the best-track analysis, as well as satellite and reconnaissance flight-level observations. In particular, the model predicts an RI rate of more than 4 hPa h−1 for an 18-h period, with the minimum central pressure of less than 889 hPa. Of significance is that the model captures a sequence of important inner-core structural variations associated with Wilma’s intensity changes, namely, from a partial eyewall open to the west prior to RI to a full eyewall at the onset of RI, rapid eyewall contraction during the initial spinup, the formation of double eyewalls with a wide moat area in between during the most intense stage, and the subsequent eyewall replacement leading to the weakening of Wilma. In addition, the model reproduces the boundary layer growth up to 750 hPa with an intense inversion layer above in the eye. Recognizing that a single case does not provide a rigorous test of the model predictability due to the stochastic nature of deep convection, results presented herein suggest that it is possible to improve forecasts of hurricane intensity and intensity changes, and especially RI, if the inner-core structural changes and storm size could be reasonably predicted in an operational setting using high-resolution cloud-permitting models with realistic initial conditions and model physical parameterizations.


2010 ◽  
Vol 67 (3) ◽  
pp. 655-672 ◽  
Author(s):  
Juan Fang ◽  
Fuqing Zhang

Abstract Based on a successful cloud-resolving simulation with the Weather Research and Forecasting Model, this study examines key processes that led to the early development of Hurricane Dolly (2008). The initial development of Dolly consisted of three stages: (i) an initial burst of convection; (ii) stratiform development, dry intrusion, and thermodynamic recovery; and (iii) reinvigoration of moist convection and rapid intensification. Advanced diagnosis of the simulation—including the use of vorticity budget analysis, contour frequency analysis diagrams, and two-dimensional spectral decomposition and filtering—suggests that the genesis of Dolly is essentially a “bottom-up” process. The enhancement of the low-level vorticity is mainly ascribed to the stretching effect, which converges the ambient vorticity through stretching enhanced by moist convection. In the rapid intensification stage, smaller-scale positive vorticity anomalies resulting from moist convection are wrapped into the storm center area under the influence of background convergent flow. The convergence and accompanying aggregation of vorticity anomalies project the vorticity into larger scales and finally lead to the spinup of the system-scale vortex. On the other hand, although there is apparent stratiform development in the inner-core areas of incipient storm after the initial burst of convection, little evidence is found to support the genesis of Dolly through downward extension of the midlevel vorticity, a key process in the “top-down” thinking.


2019 ◽  
Vol 147 (4) ◽  
pp. 1171-1191 ◽  
Author(s):  
Dandan Tao ◽  
Fuqing Zhang

Abstract This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1).


2018 ◽  
Vol 75 (1) ◽  
pp. 143-162 ◽  
Author(s):  
Udai Shimada ◽  
Masahiro Sawada ◽  
Hiroyuki Yamada

A ground-based Doppler radar observed the rapid intensification (RI) of Typhoon Goni (2015) for 24 h immediately after it completed an eyewall replacement cycle. Goni’s RI processes were examined by using radar reflectivity and wind fields retrieved by the ground-based velocity track display (GBVTD) technique. The maximum wind at 2-km altitude increased by 30 m s−1 during the first 6 h of RI, and it further increased by 20 m s−1 during the subsequent 12 h. Around the onset of RI, relatively strong outflow (>2 m s−1) was present both inside and outside the radius of maximum wind (RMW) above the boundary layer (BL), suggesting the existence of supergradient flow in and just above the BL. Despite this outflow, angular momentum increased inside the RMW. The low-level RMW contracted rapidly from 50 to 33 km, causing the RMW to slope greatly outward with height. The radius of maximum reflectivity was a few kilometers inside the RMW. A budget analysis of absolute angular momentum showed that the outflow contributed to the contraction of the tangential wind field. During RI, eyewall convection was enhanced, and a well-defined eye appeared. The low-level outflow changed into inflow immediately outside the RMW. Then the tangential wind field and high inertial stability region expanded radially outward, followed by the formation of an outer reflectivity maximum at twice the RMW. The contraction speed of the low-level RMW slowed down.


2012 ◽  
Vol 140 (10) ◽  
pp. 3361-3378 ◽  
Author(s):  
Leon T. Nguyen ◽  
John Molinari

Abstract Hurricane Irene (1999) rapidly intensified from 65 to 95 kt (~33.4 to 48.9 m s−1) in 18 h. During the rapid intensification (RI) period, the northeastward storm motion increased from 10 to 18 m s−1, the ambient southwesterly vertical wind shear increased from 6–7 to 10–13 m s −1, and the downshear tilt of the inner core vortex increased. The azimuthal wavenumber-1 asymmetric convection that developed was consistent with a superposition of shear-induced and storm motion–induced forcing for vertical motion downshear and ahead of the center. Although the diabatic heating remained strongly asymmetric, it was of sufficient intensity to dramatically increase the azimuthally averaged heating. This heating occurred almost entirely inside the radius of maximum winds, a region known to favor rapid warm core development and spinup of the vortex. It is hypothesized that asymmetric forcing from the large vertical wind shear and rapid storm motion were responsible for RI. An unanswered question is what determines whether the heating will develop within the radius of maximum winds. Extraordinarily deep cells developed in the inner core toward the end of the RI period. Rather than causing RI, these cells appeared to be an outcome of the same processes noted above.


Sign in / Sign up

Export Citation Format

Share Document