core boundary
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 3)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


Author(s):  
Yi Yang ◽  
Xiaodong Song ◽  
Adam T. Ringler

Abstract Clock accuracy is a basic parameter of any seismic station and has become increasingly important for seismology as the community seeks to refine structures and dynamic processes of the Earth. In this study, we measure the arrival time differences of moderate repeating earthquakes with magnitude 5.0–5.9 in the time range of 1991–2017 at the same seismic stations by cross-correlating their highly similar waveforms and thereby identify potential timing errors from the outliers of the measurements. The method has very high precision of about 10 ms and shows great potential to be used for routine inspection of the timing accuracy of historical and future digital seismic data. Here, we report 5131 probable cases of timing errors from 451 global and regional stations available from the Incorporated Research Institutions for Seismology Data Management Center, ranging from several tens of milliseconds to over 10 s. Clock accuracy seems to be a prevailing problem in permanent stations with long-running histories. Although most of the timing errors have already been tagged with low timing quality, there are quite a few exceptions, which call for greater attention from network operators and the seismological community. In addition, seismic studies, especially those on temporal changes of the Earth’s media from absolute arrival times, should be careful to avoid misinterpreting timing errors as temporal changes, which is indeed a problem in some previous studies of the Earth’s inner core boundary.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5663
Author(s):  
Viola Paul ◽  
Masato Wakeda ◽  
Kei Ameyama ◽  
Mie Ota-Kawabata ◽  
Takahito Ohmura

The copper harmonic structure, which consists of a coarse-grained “core” surrounded by a three-dimensional continuously connected fine-grained “shell,” exhibits both high ductility and high strength. In the present study, dislocation interactions at the shell–core boundary in the copper harmonic structure were directly measured using nanoindentation and microstructural observations via kernel average misorientation (KAM) to further understand the reason for its excellent mechanical properties. KAM analysis showed that the dislocation density in the vicinity of the shell–core boundary within the core region gradually increases with increasing plastic strain. The variation in the nanohardness exactly corresponds to the KAM, indicating that the higher strength is primarily caused by the higher dislocation density. The critical load for nanoindentation-induced plasticity initiation was lower at the shell–core boundary than at the core–core boundary, indicating a higher potency of dislocation emission at the shell–core boundary. Because dislocation–dislocation interactions are one of the major causes of the increase in the flow stress leading to higher strain hardening rates during deformation, the excellent balance between strength and ductility is attributed to the higher potency of dislocation emission at the shell–core boundary.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meryem Berrada ◽  
Richard A. Secco

There is a considerable amount of literature on the electrical resistivity of iron at Earth’s core conditions, while only few studies have considered iron and iron-alloys at other planetary core conditions. Much of the total work has been carried out in the past decade and a review to collect data is timely. High pressures and temperatures can be achieved with direct measurements using a diamond-anvil cell, a multi-anvil press or shock compression methods. The results of direct measurements can be used in combination with first-principle calculations to extrapolate from laboratory temperature and pressure to the relevant planetary conditions. This review points out some discrepancies in the electrical resistivity values between theoretical and experimental studies, while highlighting the negligible differences arising from the selection of pressure and temperature values at planetary core conditions. Also, conversions of the reported electrical resistivity values to thermal conductivity via the Wiedemann-Franz law do not seem to vary significantly even when the Sommerfeld value of the Lorenz number is used in the conversion. A comparison of the rich literature of electrical resistivity values of pure Fe at Earth’s core-mantle boundary and inner-core boundary conditions with alloys of Fe and light elements (Si, S, O) does not reveal dramatic differences. The scarce literature on the electrical resistivity at the lunar core suggests the effect of P on a wt% basis is negligible when compared to that of Si and S. On the contrary, studies at Mercury’s core conditions suggest two distinct groups of electrical resistivity values but only a few studies apply to the inner-core boundary. The electrical resistivity values at the Martian core-mantle boundary conditions suggest a negligible contribution of Si, S and O. In contrast, Fe-S compositions at Ganymede’s core-mantle boundary conditions result in large deviations in electrical resistivity values compared to pure Fe. Contour maps of the reported values illustrate ρ(P, T) for pure Fe and its alloys with Ni, O and Si/S and allow for estimates of electrical resistivity at the core-mantle boundary and inner-core boundary conditions for the cores of terrestrial-like planetary bodies.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
Rajdeep Dasgupta

AbstractEvaluating carbon’s candidacy as a light element in the Earth’s core is critical to constrain the budget and planet-scale distribution of this life-essential element. Here we use first principles molecular dynamics simulations to estimate the density and compressional wave velocity of liquid iron-carbon alloys with ~4-9 wt.% carbon at 0-360 gigapascals and 4000-7000 kelvin. We find that for an iron-carbon binary system, ~1-4 wt.% carbon can explain seismological compressional wave velocities. However, this is incompatible with the ~5-7 wt.% carbon that we find is required to explain the core’s density deficit. When we consider a ternary system including iron, carbon and another light element combined with additional constraints from iron meteorites and the density discontinuity at the inner-core boundary, we find that a carbon content of the outer core of 0.3-2.0 wt.%, is able to satisfy both properties. This could make the outer core the largest reservoir of terrestrial carbon.


2021 ◽  
Vol 118 (19) ◽  
pp. e2026360118
Author(s):  
Lewis J. Conway ◽  
Chris J. Pickard ◽  
Andreas Hermann

The solar system’s outer planets, and many of their moons, are dominated by matter from the H–C–N–O chemical space, based on solar system abundances of hydrogen and the planetary ices H2O, CH4, and NH3. In the planetary interiors, these ices will experience extreme pressure conditions, around 5 Mbar at the Neptune mantle–core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. While temperature will dictate the formation of compounds, ground-state density functional theory allows us to probe the chemical effects resulting from pressure alone. These structural developments in turn determine the planets’ interior structures, thermal evolution, and magnetic field generation, among others. Despite its importance, the H–C–N–O system has not been surveyed systematically to explore which compounds emerge at high-pressure conditions, and what governs their stability. Here, we report on and analyze an unbiased crystal structure search among H–C–N–O compounds between 1 and 5 Mbar. We demonstrate that simple chemical rules drive stability in this composition space, which explains why the simplest possible quaternary mixture HCNO—isoelectronic to diamond—emerges as a stable compound and discuss dominant decomposition products of planetary ice mixtures.


Sign in / Sign up

Export Citation Format

Share Document