radial magnetic field
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Masoom Jethwa

Abstract: This study assesses the Martian ionopause using MAVEN datasets between periapsis and 150-600 km. Ionopause is an abrupt reduction of the electron density with increasing altitude. It is also required to verify the simultaneous increase of the electron temperature and variability below 400 km. To address this issue, we have adopted a computational approach in determining the ionopause-like density structure of the ionospheric profile. From computing thermal & magnetic pressures, radial magnetic field components, ionopause-like density gradient are detected and stored. The ionopause (theoretically) is formed where the total ionospheric pressure equals solar wind dynamic pressure. The present algorithm consists of a comprehensive set of conditions to be performed on the dataset sequentially. These include datasets from various instruments simultaneously observed. The primary objective of the present study is to describe the implementation and testing of this algorithm for big datasets of the Martian ionosphere and extract ionopause-like density gradient using automation. Keywords: Ionopause, Mars, Remote sensing, MAVEN dataset, Parallel-processing


2021 ◽  
Vol 923 (2) ◽  
pp. 174
Author(s):  
S. D. Bale ◽  
T. S. Horbury ◽  
M. Velli ◽  
M. I. Desai ◽  
J. S. Halekas ◽  
...  

Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks. These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma β and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust.


2021 ◽  
Vol 923 (1) ◽  
pp. 57
Author(s):  
Oliver E. K. Rice ◽  
Anthony R. Yeates

Abstract Given a known radial magnetic field distribution on the Sun’s photospheric surface, there exist well-established methods for computing a potential magnetic field in the corona above. Such potential fields are routinely used as input to solar wind models, and to initialize magneto-frictional or full magnetohydrodynamic simulations of the coronal and heliospheric magnetic fields. We describe an improved magnetic field model that calculates a magneto-frictional equilibrium with an imposed solar wind profile (which can be Parker’s solar wind solution, or any reasonable equivalent). These “outflow fields” appear to approximate the real coronal magnetic field more closely than a potential field, take a similar time to compute, and avoid the need to impose an artificial source surface. Thus they provide a practical alternative to the potential field model for initializing time-evolving simulations or modeling the heliospheric magnetic field. We give an open-source Python implementation in spherical coordinates and apply the model to data from solar cycle 24. The outflow tends to increase the open magnetic flux compared to the potential field model, reducing the well-known discrepancy with in situ observations.


2021 ◽  
Vol 923 (1) ◽  
pp. 105
Author(s):  
Yan Li ◽  
Shaosui Xu ◽  
Janet G. Luhmann ◽  
Benoit Lavraud

Abstract We study solar wind anomalies and their associations with solar wind structures using the STEREO solar wind and suprathermal electron (STE) data from IMPACT and PLASTIC. We define solar wind anomalies as temporary and local excursions from the average solar wind state, regardless of their origins, for six anomalies: sunward strahls, counterstreaming suprathermal electrons, suprathermal electron depletions, nearly radial magnetic field episodes, anomalously low proton temperatures, and anomalously low proton beta. We first establish the solar wind synoptic contour displays, which show the expected variations in solar wind structure during the solar cycle: recurrent corotating heliospheric magnetic field (HMF) and stream structures are dominant during solar quiet times around the solar minimum (2008 December) preceding cycle 24, while complex structures characterize solar active times around the solar maximum (2014 April). During the declining phase of the cycle (2016–2019), the stream structures remain complex, but the HMF sectors show the structures of the solar minimum. We then systematically study the six anomalies by analyzing the STE data using automated procedures. All anomalies present some degree of dependence on the large-scale solar wind structure, especially around the solar minimum, implying that the solar wind structure plays a role in either the generation or transportation of these anomalies. One common feature of all of the anomalies is that the distributions of the durations of the anomalous episodes all peak at the 1 hr data resolution, but monotonically decrease over longer durations, which may arguably imply that solar anomalies occur on a continuum of temporal and spatial scales.


Author(s):  
Mike D Sumption ◽  
John Murphy ◽  
Timothy J Haugan ◽  
Milan Majoros ◽  
Danko C van der Laan ◽  
...  

Abstract We have measured ReBCO coated conductor-based CORC® and Roebel cables at 77 K in a Spinning Magnet Calorimeter which subjected the tapes in the samples to a radial magnetic field of 566 mT (peak) at frequencies up to 120 Hz (272 T/s, cyclic average) with an approximately sinusoidal waveform. The samples were oriented such that the field applied to the tapes within the cables was entirely radial, simplifying subsequent analysis. An expression for loss which included hysteretic, flux creep, and eddy current losses was fit to both the CORC® and the Roebel cables. This expression allowed easy comparison of the relative influence of eddy currents and flux creep (or power-law behavior) effects. The loss of both the CORC® and Roebel cables measured here were seen to be essentially the sum of the hysteretic loss, flux creep effects, and the normal metal eddy current losses of the individual tapes. The losses of these cables were measured at high B*dB/dt with no coupling current loss observed under the present preparation conditions. The influence of flux creep effects on loss were not negligible. The losses of the CORC® cable per meter of tape were seen to be reduced from the case of a flat tape because of the helical geometry of the tapes.


Author(s):  
A. MAGESH ◽  
M. KOTHANDAPANI

In this investigation, we have analyzed the peristaltic movement of MHD Carreau nanofluids in a curved channel by taking the thermophoresis and Brownian motion effects into account. The governing equations of the fluid flow like the equations of continuity, momentum, temperature and concentration are modulated and abridged by using the theory of lubrication approximations. A regular perturbation is used to solve the simplified coupled nonlinear differential equations. The changes of various fluid parameters on axial velocity, temperature and concentrations are carefully calculated, and the graphical results are analyzed. According to the result of this study, it is determined that the resulting velocity of nanofluid decreases significantly when the applied radial magnetic field is strengthened. In addition, the curvature parameter has a significant impact on the concentration function, and when the curvature of the channel is increased, the absolute value of the nanoparticle concentration distribution diminishes.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012032
Author(s):  
Syed Abdul Lateef ◽  
A.T. Sriram ◽  
M. Murali Krishnan ◽  
A. Sivathanu Pillai

Abstract SPT-100 electrostatic thruster is considered, and the effects of magnetic circuit is studied by introducing magnetic screen. The magnetic flux density in the discharge channel is generated with the help of one inner coil and four outer coils. The radial magnetic field has to be maximum near the exit plane of the thruster to trap the electrons in acceleration region which are emitted from an external hollow cathode. These electrons help in increasing the ionization rate of the propellant gas. This is obtained by placing magnetic poles near exit plane. It helps to traps the electrons emitted from the external hollow cathode. The magnetic circuit should be designed such that the magnetic flux density is near to zero at the anode plane to reduce interaction of electrons with channel walls. To arrive at such better design, magnetic screens are used. Computational simulations are performed to quantify the magnetic flux density distribution along the channel using COMSOL Multiphysics software. The simulation results show that the obtained radial magnetic flux density is maximum near the exit plane, and the magnetic screens help in reducing the magnetic field at the anode region while maintaining the maximum magnetic field at the exit plane.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012018
Author(s):  
Chao Zuo ◽  
Meng Chen ◽  
Hanchen Xiao ◽  
Pan Geng

Abstract A double-layer ferromagnetic cylindrical shell causes a magnetic anomaly in its surrounding space under the action of the geomagnetic field. Aiming at the problems of poor compensation uniformity and obvious local magnetization caused by the single-branch winding compensation method, a double-branch winding solution is proposed. By establishing a double-layer ferromagnetic cylindrical shell model, the radial magnetization characteristics of the cylindrical shell under the action of the vertical geomagnetic field was analyzed, and the opening angle of double-branch winding was studied. By optimizing the opening angle of compensation windings in the three proposed configuration schemes with respect to the minimum abnormal magnetic field, the optimal ranges of opening angle for the double-branch compensation windings were determined.


2021 ◽  
Vol 17 ◽  
Author(s):  
B. Kanimozhi ◽  
M. Muthtamilselvan ◽  
Qasem M. Al-Mdallal ◽  
Bahaaeldin Abdalla

Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for other two boundaries. The effect of magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations. Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters. Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows.Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number. Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.


Sign in / Sign up

Export Citation Format

Share Document