scholarly journals Role of equation of states and thermodynamic potentials in avoidance of trapped surfaces in gravitational collapse

2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Rituparno Goswami ◽  
Terricia Govender
2014 ◽  
Vol 563 ◽  
pp. A85 ◽  
Author(s):  
Neil Vaytet ◽  
Kengo Tomida ◽  
Gilles Chabrier

2019 ◽  
Vol 26 (04) ◽  
pp. 1950022
Author(s):  
César A. Rodríguez-Rosario ◽  
Thomas Frauenheim ◽  
Alán Aspuru-Guzik

Here we demonstrate how the interplay between quantum coherences and a decoherence bath, such as one given by continuos quantum measurements, lead to new kinds of thermodynamic potentials and flows. We show how a mathematical extension of thermodynamics includes decoherence baths leading to a more general sense of the zeroth and first law. We also show how decoherence adds contributions to the change in entropy production in the second law. We derive a thermodynamic potential that depends only on the interplay between quantum coherences and a decoherence thermodynamic bath. This leads to novel thermodynamic effects, such as Onsager relationships that depend on quantum coherences. This provides a thermodynamics interpretation of the role of decoherence on quantum transport in very general systems.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350021 ◽  
Author(s):  
ABHAS MITRA

It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542021 ◽  
Author(s):  
Filipe C. Mena

We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.


2019 ◽  
Vol 34 (02) ◽  
pp. 1950012 ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
A. Yousaf

Assuming a system with spherical symmetry in f(R) gravity filled with dissipative charged and anisotropic matter, we study the impact of density inhomogeneity and local anisotropy on the gravitational collapse in the presence of charge. For this purpose, we evaluated the modified Maxwell field equations, Weyl curvature tensor, and the mass function. Using Misner–Sharp mass formalism, we construct a relation between the Weyl tensor, density inhomogeneity, and local anisotropy. Specifically, we obtain the expression of modified Tolman mass which helps to analyze the influence of charge and dark source terms on different physical factors, also it helps to study the role of these factors on gravitational collapse.


Sign in / Sign up

Export Citation Format

Share Document