Response of sun- and shade-adapted plants of Haberlea rhodopensis to desiccation

2012 ◽  
Vol 67 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Katya Georgieva ◽  
Snejana Doncheva ◽  
Gergana Mihailova ◽  
Snejana Petkova
2014 ◽  
Vol 171 (17) ◽  
pp. 1591-1600 ◽  
Author(s):  
Éva Sárvári ◽  
Gergana Mihailova ◽  
Ádám Solti ◽  
Áron Keresztes ◽  
Maya Velitchkova ◽  
...  

2017 ◽  
Vol 35 (3) ◽  
pp. 313-322 ◽  
Author(s):  
Gergana Mihailova ◽  
Doreen Abakumov ◽  
Claudia Büchel ◽  
Lars Dietzel ◽  
Katya Georgieva

1987 ◽  
Vol 105 (1) ◽  
pp. 81-88 ◽  
Author(s):  
A. NASRULHAQ-BOYCE ◽  
M. A. HAJI MOHAMED
Keyword(s):  

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Piotr Salachna ◽  
Rafał Piechocki

Hardy ferns form a group of attractive garden perennials with an unknown response to abiotic stresses. The aim of this study was to evaluate the tolerance of three species of ferns of Dryopteris genus (D. affinis, D. atrata and D. filix-mas) and one cultivar (D. filix-mas cv. “Linearis-Polydactylon”) to salinity and light stress. The plants were grown in full sun and shade and watered with 50 and 100 mM dm−3 NaCl solution. All taxa treated with 100 mM NaCl responded with reduced height, leaf greenness index and fresh weight of the above-ground part. In D. affinis and D. atrata salinity caused leaf damage manifested by necrotic spots, which was not observed in the other two taxa. The effect of NaCl depended on light treatments and individual taxon. D. affinis and D. atrata were more tolerant to salinity when growing under shade. Contrary to that, D. filix-mas cv. “Linearis-Polydactylon” seemed to show significantly greater tolerance to this stress under full sun. Salt-treated D. filix-mas cv. “Linearis-Polydactylon” plants accumulated enhanced amounts of K+ in the leaves, which might be associated with the taxon’s tolerance to salinity. Among the investigated genotypes, D. filix-mas cv. “Linearis-Polydactylon” seemed the most and D. affinis and D. atrata the least tolerant to salinity and light stress.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 480
Author(s):  
Martina Zappaterra ◽  
Laura Menchetti ◽  
Leonardo Nanni Costa ◽  
Barbara Padalino

This study aimed at documenting whether dromedary camels have a preference for shade and how their behavior would change depending on the presence of shade and variable space allowance. A total of 421 animals kept in 76 pens (66 with shelter (Group 1), and 10 without shelter (Group 2)) at the camel market in Doha (Qatar) were recorded for 1 min around 11:00 a.m. when the temperature was above 40 °C. The number of animals in the sun and shade and their behaviors were analyzed using an ad libitum sampling method and an ad hoc ethogram. The results of a chi-square test indicated that camels in Group 1 had a clear preference for shade (p < 0.001). The majority of Group 1 camels were indeed observed in the shade (312/421; 74.11%). These camels spent more time in recumbency and ruminating, while standing, walking, and self-grooming were more commonly expressed by the camels in the sun (p < 0.001). Moreover, locomotory stereotypic behaviors (i.e., pacing) increased as space allowance decreased (p = 0.002). Based on the findings of this pilot study, camels demonstrated a preference for shade; shade seemed to promote positive welfare, while overcrowding seemed to trigger stereotypy and poor welfare. Overall, our preliminary results are novel and provide evidence that shaded areas are of paramount importance for camel welfare. Further research, involving designed studies at multiple locations is needed to confirm these results.


1938 ◽  
Vol 13 (4) ◽  
pp. 871-872 ◽  
Author(s):  
William A. Beck
Keyword(s):  

1994 ◽  
Vol 21 (3) ◽  
pp. 377 ◽  
Author(s):  
A Alvino ◽  
M Centritto ◽  
FD Lorenzi

Pepper (Capsicum annuum L.) plants were grown in 1 m2 lysimeters under two different water regimes in order to investigate differences in the spatial arrangements of the leaves and to relate this to daily assimilation rates of leaves of the canopy. The control regime (well-watered (W) treatment) was irrigated whenever the accumulated 'A' pan evaporation reached 4 cm, whereas the water-stressed (S) treatment was watered whenever the predawn leaf water potential fell below -1 MPa. During the growing cycle, equal numbers of sun and shade leaves were chosen from the apical, middle and basal parts of the canopy, corresponding to groups of leaves of increasing age. The CO2 exchange rate (CER) was measured at 0830, 1230 and 1530 hours on 8 days along the crop cycle, on leaves in their natural inclination and orientation. Leaf water potentials were measured on apical leaves before dawn and concurrently with gas exchange measurements. Control plants maintained predawn leaf water potential at -0.3 MPa, but S plants reached values lower than -1.2 MPa. Midday leaf water potentials were about twice as low in the S plants as in the controls. Water stress reduced LA1 during the period of crop growth, and dry matter production at harvest. Stressed apical leaves appeared to reduce stress by changing their inclination. They were paraheliotropic around midday and diaheliotropic at 0830 and 1530 hours. The CER values of the S treatment were significantly lower than those of the W treatment in apical and middle leaves, whereas the CER of basal leaves did not differ in either treatments. In the S treatment, reduction in the CER values of sunlit apical leaves was more evident in the afternoon than at midday or early in the morning, whereas basal leaves were less affected by water than basal stress leaves if sunlit, and negligibly in shaded conditions.


Sign in / Sign up

Export Citation Format

Share Document