Twenty-four alleles at twelve quantitative trait loci act additively to control tiller angle in cultivated rice

2019 ◽  
Vol 88 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Yuxiang Zeng ◽  
Yuan Chen ◽  
Zhijuan Ji ◽  
Yan Liang ◽  
Changdeng Yang
2013 ◽  
Vol 47 (6) ◽  
pp. 594-601
Author(s):  
Zhao Chunfang ◽  
Zhou Lihui ◽  
Yu Xin ◽  
Zhao Qingyong ◽  
Chen Tao ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 162-175 ◽  
Author(s):  
Si-Ju Zhang ◽  
Xue-Qin Song ◽  
Bai-Sheng Yu ◽  
Bao-Cai Zhang ◽  
Chuan-Qing Sun ◽  
...  

2020 ◽  
Author(s):  
Quanya Tan ◽  
Tuo Zou ◽  
Mingmin Zheng ◽  
Yuerong Ni ◽  
Xin Luan ◽  
...  

Abstract Background: Stigma exsertion rate (SER) is a key determinant for outcrossing ability of male sterility lines (MSLs) in hybrid rice seed production. Outcrossing ability in cultivated rice varieties has diminished during the process of domestication, while wild Oryza species keep strong outcrossing ability. Here, we detected the quantitative trait loci (QTLs) controlling SER using a set of single-segment substitution lines (SSSLs) derived from O. glumaepatula, a wild Oryza species.Results: Seven QTLs for SER, qSER-1a, qSER-1b, qSER-3a, qSER-3b, qSER-5, qSER-9 and qSER-10, were located on 5 chromosomes. qSER-1a and qSER-1b were located on chromosome 1. qSER-3a and qSER-3b were mapped on chromosome 3, and qSER-3b was further located at an interval of 931.0kb by secondary substitution mapping. qSER-5, qSER-9 and qSER-10 were identified on chromosomes 5, 9 and 10, respectively, and qSER-9 was delimited to a region of 608.2kb by secondary substitution mapping. The additive effects of the 7 QTLs ranged from 10.6% to 14.8%, and the additive contribution variances explained by each of the QTLs were from 36.3% to 50.6%, which were higher than those of most loci for SER reported previously.Conclusions: qSER-1a and qSER-1b were novel loci for SER on chromosome 1. All of the 7 QTLs had major effects on SER. The major QTLs of SER will help to develop MSLs with strong outcrossing ability.


Genome ◽  
2008 ◽  
Vol 51 (9) ◽  
pp. 692-704 ◽  
Author(s):  
Lubin Tan ◽  
Peijiang Zhang ◽  
Fengxia Liu ◽  
Guijuan Wang ◽  
Sheng Ye ◽  
...  

To understand the genetic characteristics of the traits related to differentiation between cultivated rice and its wild progenitor, genetic factors controlling domestication- and yield-related traits were identified using a BC3F2 population derived from an accession of common wild rice (donor, Oryza rufipogon Griff.) collected from Yuanjiang, Yunnan province, China, and an indica cultivar, Teqing (recipient, Oryza sativa L.). A genetic linkage map consisting of 125 simple sequence repeat (SSR) markers was constructed. Based on the phenotypes of the 383 BC3F2 families evaluated in two environments, two domestication-related morphological traits, panicle shape and growth habit, were found to be controlled by single Mendelian factors. This implies that the recessive mutations of single genes controlling some morphological traits could have been easily selected during early domestication. By single-point analysis and interval mapping, 59 putative quantitative trait loci (QTLs) that influence 11 quantitative traits were detected at two sites, and 37.5% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield-related traits in the Teqing background. Regions with significant QTLs for domestication- and yield-related traits were detected on chromosomes 1, 4, 5, 7, 8, and 12. Fine mapping and cloning of these domestication-related genes and QTLs will be useful in elucidating the origin and differentiation of Asian cultivated rice in the future.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 899-909 ◽  
Author(s):  
Jinhua Xiao ◽  
Jiming Li ◽  
Silvana Grandillo ◽  
Sang Nag Ahn ◽  
Longping Yuan ◽  
...  

Abstract Wild species are valued as a unique source of genetic variation, but they have rarely been used for the genetic improvement of quantitative traits. To identify trait-improving quantitative trait loci (QTL) alleles from exotic species, an accession of Oryza rufipogon, a relative of cultivated rice, was chosen on the basis of a genetic diversity study. An interspecific BC2 testcross population (V20A/O. rufipogon//V20B///V20B////Ce64) consisting of 300 families was evaluated for 12 agronomically important quantitative traits. The O. rufipogon accession was phenotypically inferior for all 12 traits. However, transgressive segregants that outperformed the original elite hybrid variety, V20A/Ce64, were observed for all traits examined. A set of 122 RFLP and microsatellite markers was used to identify QTL. A total of 68 significant QTL were identified, and of these, 35 (51%) had beneficial alleles derived from the phenotypically inferior O. rufipogon parent. Nineteen (54%) of these beneficial QTL alleles were free of deleterious effects on other characters. O. rufipogon alleles at two QTL on chromosomes 1 and 2 were associated with an 18 and 17% increase in grain yield per plant, respectively, without delaying maturity or increasing plant height. This discovery suggests that the innovative use of molecular maps and markers can alter the way geneticists utilize wild and exotic germplasm.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
R Hall ◽  
R Müllenbach ◽  
S Huss ◽  
R Alberts ◽  
K Schughart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document