scholarly journals Globular adiponectin inhibits osteoblastic differentiation of vascular smooth muscle cells through the PI3K/AKT and Wnt/β-catenin pathway

Author(s):  
Yun Zhou ◽  
Li-Long Wei ◽  
Rui-Ping Zhang ◽  
Cheng-Wu Han ◽  
Yongtong Cao

AbstractLipid metabolism is closely related to the improvement of vascular calcification (VC) in chronic kidney disease (CKD). Globular adiponectin (gAd) has been reported to be involved in the development of VC in CKD, but the detailed regulatory role remains unclear. The present study is aimed to investigate the biological function and the underlying regulation mechanism of gAd in the process of VC during CKD. Vascular smooth muscle cells (VSMCs) calcification was determined by Alizarin Red S staining. Protein signaling related with VC was tested by western blotting. The expression and intracellular localization of runt-related transcription factor 2 (Runx2) was detected by immunofluorescence and uraemic rat with VC was established by a two-step nephrectomy. Combined with the results of Alizarin Red S staining, we discovered that β-glycerophosphate (β-Gp)-induced the osteoblastic differentiation of VSMCs was significantly reversed by gAd treatment. Along with the VSMCs calcification and the increase of Runx2 in β-Gp-exposed VSMCs, the activities of protein kinase B (AKT) and Wnt/β-catenin pathway were enhanced, but that were counteracted by the exposure of gAd in rat and human VSMCs. After administration with agonists of the Wnt (SKL2001) and AKT (SC79), there appeared more osteoblastic differentiation and higher expression of Runx2 in gAd-treated VSMCs, but showing lower impact in the presence of SC79 than that in the presence of SKL2001. In the in vivo experiments, intravenous injection of gAd also significantly inhibited VC and Runx2 level in uraemic rat in a dose-dependent manner, possibly through regulating Wnt/β-catenin pathway. This study demonstrates that gAd ameliorates osteoblastic differentiation of VSMCs possibly by blocking PI3K/AKT and Wnt/β-catenin signaling transduction. The findings provide an important foundation for gAd in treating VC in kidney diseases.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tianlei Chen ◽  
Huijuan Mao ◽  
Cheng Chen ◽  
Lin Wu ◽  
Ningning Wang ◽  
...  

Objective. To investigate the role and possible mechanism ofα-Klotho in the calcification and the osteogenic transition of cultured VSMCs.Methods. VSMCs were culturedin vitroand divided into 5 groups, each using a different medium: (1) control; (2)β-GP; (3)β-GP + Klotho; (4)β-GP + LiCl; (5)β-GP + Klotho + LiCl. Calcium deposits were visualized using Alizarin Red S staining. The calcium concentrations were determined by the o-cresolphthalein complexone method. BMP2, Runx2 andβ-catenin levels were estimated by western blotting, and the level ofα-SMA was determined by using immunofluorescence at day 12.Results.β-GP induced an increase in the expression of BMP2, Runx2, andβ-catenin. The calcium content increased, and the expression ofα-SMA decreased. Alizarin Red S staining was positive under the high phosphorus conditions. BMP2, Runx2, andβ-catenin levels and the calcium content decreased when the cells were cultured with rmKlotho; however, the levels of each were upregulated after treatment with the LiCl.Conclusions. Klotho can ameliorate the calcification and osteogenic transition of VSMCs induced byβ-GP. The mechanism of Klotho in preventing calcification in VSMCs may be partially mediated by the inhibition of the Wnt/β-catenin signaling pathway.


2014 ◽  
Vol 19 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Dongxing Zhu ◽  
Neil Charles Wallace Mackenzie ◽  
Catherine M. Shanahan ◽  
Rukshana C. Shroff ◽  
Colin Farquharson ◽  
...  

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii233-iii233
Author(s):  
Paola Ciceri ◽  
Francesca Elli ◽  
Monica Falleni ◽  
Delfina Tosi ◽  
Gaetano Bulfamante ◽  
...  

2021 ◽  
Author(s):  
Li Chen ◽  
Rongrong Zhang ◽  
Jinyin Li ◽  
Yiping Gao ◽  
Shilong Mao

Abstract Background: Calcium deposition in vascular smooth muscle cells (VSMCs) can lead to the rigidity of the vasculature and an increase of risk in cardiac events. This study aimed to explore the role of exosomal microRNA-151-3p (miR-151-3p) in the regulation of VSMC calcification. Methods: A cellular calcification model was established using the mouse primary aortic VSMCs by β-glycerophosphate treatment. The calcium deposition was evaluated by Alizarin Red staining. The expression of miR-151-3p in exosomes was evaluated by qRT-PCR. The relationship between miR-151-3p and Atg5 was determined by bioinformatics analysis and dual-luciferase gene reporter assay. The exosome derived from mouse VSMCs transfected with miR-151-3p mimics/inhibitor were isolated and used to stimulate VSMCs. The expression of Atg5, α-SMA, OPN, Runx2 and BMP2 was evaluated by western blot. An animal model was established to investigate the role of miR-151-3p in exosomes.Results: MiR-151-3p was significantly upregulated in the exosomes of VSMCs treated with β-glycerophosphate. Exosomes derived from calcific VSMCs increased the calcium deposition of general VSMCs without any treatment. Exosomes derived from miR-151-3p mimics transfected VSMCs increased the expression of Runx2 and BMP2, while reduced the expression of α-SMA and OPN in general VSMCs. and exosomes derived from miR-151-3p inhibitor transfected VSMCs reversed these effects in vitro. Meanwhile, miR-151-3p served as a ceRNA of Atg5 by directly binding to the 3'UTR of Atg5. Moreover, the expression of α-SMA, OPN, Runx2 and BMP2 in vivo was consistent with the results in VSMCs in vitro.Conclusion: Our study revealed that miR-151-3p in VSMCs-derived exosomes might induce calcium deposition through regulating Atg5 expression, suggesting that miR-151-3p might be a potential biomarker for vascular calcification.


2011 ◽  
Vol 80 (7) ◽  
pp. 731-739 ◽  
Author(s):  
Erzsébet Zavaczki ◽  
Viktória Jeney ◽  
Anupam Agarwal ◽  
Abolfazl Zarjou ◽  
Melinda Oros ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Ana Amaya Garrido ◽  
José M Valdivielso ◽  
Stanislas Faguer ◽  
Arnaud Del Bello ◽  
Benedicte Buffin-Meyer ◽  
...  

Abstract Background and Aims Vascular calcification, leading to aortic stiffening and heart failure, is decisive risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). Promoted by bone mineral disorder and systemic inflammation in CKD patients, vascular calcification is a complex mechanism involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. Despite intensive research efforts in recent years, available treatments have limited effect and none of them prevent or reverse vascular calcification. The aim of this study was to analyse the serum proteome of CKD stage 3-4 patients in order to unravel new molecular changes associated to CV morbid-mortality and to decipher the role of novel candidates on vascular calcification to provide potential new therapeutic agents. Method In this study we used serum samples from two independent cohorts: 112 CKD stage 3-4 patients with a 4 years follow-up for CV events and 222 CKD stage 5 patients exhibiting a broad range of calcification degree determined by histological quantification in the epigastric and/or iliac artery. Serum proteome analysis was performed using tandem mass-spectrometry in a subcohort of 66 CKD3-4 patients and validation of protein candidates was performed using ELISA in the two full cohorts. Human primary vascular smooth muscle cells and mouse aortic rings were used for calcification assays. Calcium content was quantified using QuantiChrom calcium assay kit and calcium deposition was visualized by Alizarin Red and Von Kossa staining. Results Among 443 proteins detected in the serum of CKD3-4 patients, 134 displayed significant modified abundance in patients with CV events (n=32) compared to patients without (n=34). One of the most prominent changes was increased level of calprotectin (up to 8.6 fold, P<.0001). Using ELISA, we validated that higher serum calprotectin levels were strongly associated with higher probability of developing CV complications and increased mortality in CKD stage 3-4 patients (Figure A). Moreover, we showed that higher serum calprotectin was associated with increased vascular calcification levels in CKD stage 5 patients (Figure B). In vitro, calprotectin promoted calcification of human VSMCs (p<0.0001) (Figures C-D) and in mouse aortic rings (p<0.0001) (Figure E-F). Interestingly, these effects were significantly attenuated by paquinimod, a calprotectin inhibitor (Figures C-F). Conclusion Circulating calprotectin is a novel predictor of CV outcome and mortality in CKD patients. Calprotectin also shows calcification-inducing properties and its blockade by paquinimod alleviates its effects. Future experiments will consist in deciphering the signalling pathways involved in the regulation of calcification by calprotectin and evaluating in vivo the therapeutic potential of paquinimod on the development of medial vascular calcification lesions associated with CKD.


Sign in / Sign up

Export Citation Format

Share Document