scholarly journals SP362EFFECT OF IRON CITRATE ON MATRIX AND SIMIL-OSTEOBLASTIC DIFFERENTIATION IN HIGH PHOSPHATE TREATED VASCULAR SMOOTH MUSCLE CELLS

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii233-iii233
Author(s):  
Paola Ciceri ◽  
Francesca Elli ◽  
Monica Falleni ◽  
Delfina Tosi ◽  
Gaetano Bulfamante ◽  
...  
Author(s):  
Yun Zhou ◽  
Li-Long Wei ◽  
Rui-Ping Zhang ◽  
Cheng-Wu Han ◽  
Yongtong Cao

AbstractLipid metabolism is closely related to the improvement of vascular calcification (VC) in chronic kidney disease (CKD). Globular adiponectin (gAd) has been reported to be involved in the development of VC in CKD, but the detailed regulatory role remains unclear. The present study is aimed to investigate the biological function and the underlying regulation mechanism of gAd in the process of VC during CKD. Vascular smooth muscle cells (VSMCs) calcification was determined by Alizarin Red S staining. Protein signaling related with VC was tested by western blotting. The expression and intracellular localization of runt-related transcription factor 2 (Runx2) was detected by immunofluorescence and uraemic rat with VC was established by a two-step nephrectomy. Combined with the results of Alizarin Red S staining, we discovered that β-glycerophosphate (β-Gp)-induced the osteoblastic differentiation of VSMCs was significantly reversed by gAd treatment. Along with the VSMCs calcification and the increase of Runx2 in β-Gp-exposed VSMCs, the activities of protein kinase B (AKT) and Wnt/β-catenin pathway were enhanced, but that were counteracted by the exposure of gAd in rat and human VSMCs. After administration with agonists of the Wnt (SKL2001) and AKT (SC79), there appeared more osteoblastic differentiation and higher expression of Runx2 in gAd-treated VSMCs, but showing lower impact in the presence of SC79 than that in the presence of SKL2001. In the in vivo experiments, intravenous injection of gAd also significantly inhibited VC and Runx2 level in uraemic rat in a dose-dependent manner, possibly through regulating Wnt/β-catenin pathway. This study demonstrates that gAd ameliorates osteoblastic differentiation of VSMCs possibly by blocking PI3K/AKT and Wnt/β-catenin signaling transduction. The findings provide an important foundation for gAd in treating VC in kidney diseases.


2014 ◽  
Vol 19 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Dongxing Zhu ◽  
Neil Charles Wallace Mackenzie ◽  
Catherine M. Shanahan ◽  
Rukshana C. Shroff ◽  
Colin Farquharson ◽  
...  

2015 ◽  
Vol 309 (8) ◽  
pp. F744-F754 ◽  
Author(s):  
Shunsuke Yamada ◽  
Masanori Tokumoto ◽  
Kazuhiko Tsuruya ◽  
Narihito Tatsumoto ◽  
Hideko Noguchi ◽  
...  

Although dietary phosphate restriction is important for treating hyperphosphatemia in patients with chronic kidney disease, it remains unclear whether a low-protein diet (LPD), which contains low phosphate, has beneficial effects on malnutrition, inflammation, and vascular calcification. The effects of LPD on inflammation, malnutrition, and vascular calcification were therefore assessed in rats. Rats were fed a normal diet or diets containing 0.3% adenine and low/normal protein and low/high phosphate. After 6 wk, serum and urinary biochemical parameters, systemic inflammation, and vascular calcification were examined. The protective effect of fetuin-A and albumin were assessed in cultured vascular smooth muscle cells. Rats fed the diet containing 0.3% adenine developed severe azotemia. LPD in rats fed high phosphate induced malnutrition (decreases in body weight, food intake, serum albumin and fetuin-A levels, and urinary creatinine excretion) and systemic inflammation (increases in serum tumor necrosis factor-α and urinary oxidative stress marker). LPD decreased the serum fetuin-A level and fetuin-A synthesis in the liver and increased serum calcium-phosphate precipitates. A high-phosphate diet increased aortic calcium content, which was enhanced by LPD. Reduced fetal calf serum in the medium of cultured vascular smooth muscle cells enhanced phosphate-induced formation of calcium-phosphate precipitates in the media and calcification of vascular smooth muscle cells, both of which were prevented by fetuin-A administration. Our results suggest that phosphate restriction by restricting dietary protein promotes vascular calcification by lowering the systemic fetuin-A level and increasing serum calcium-phosphate precipitates and induces inflammation and malnutrition in uremic rats fed a high-phosphate diet.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Jing Zhang ◽  
Bin Zheng ◽  
Pei-pei Zhou ◽  
Ruo-Nan Zhang ◽  
Ming He ◽  
...  

High phosphate induces the expression of Klf5 and VSMC calcification. Klf5 binds directly to the Runx2 promoter and activates its transcription. Vascular calcification is coupled with phenotype conversion of VSMCs through Klf5-mediated transactivation of Runx2 promoter.


Sign in / Sign up

Export Citation Format

Share Document