Superoxide production: A procalcifying cell signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcification media

2008 ◽  
Vol 42 (9) ◽  
pp. 789-797 ◽  
Author(s):  
Thibault Sutra ◽  
Marion Morena ◽  
Anne-Sophie Bargnoux ◽  
Bertrand Caporiccio ◽  
Bernard Canaud ◽  
...  
Author(s):  
Yun Zhou ◽  
Li-Long Wei ◽  
Rui-Ping Zhang ◽  
Cheng-Wu Han ◽  
Yongtong Cao

AbstractLipid metabolism is closely related to the improvement of vascular calcification (VC) in chronic kidney disease (CKD). Globular adiponectin (gAd) has been reported to be involved in the development of VC in CKD, but the detailed regulatory role remains unclear. The present study is aimed to investigate the biological function and the underlying regulation mechanism of gAd in the process of VC during CKD. Vascular smooth muscle cells (VSMCs) calcification was determined by Alizarin Red S staining. Protein signaling related with VC was tested by western blotting. The expression and intracellular localization of runt-related transcription factor 2 (Runx2) was detected by immunofluorescence and uraemic rat with VC was established by a two-step nephrectomy. Combined with the results of Alizarin Red S staining, we discovered that β-glycerophosphate (β-Gp)-induced the osteoblastic differentiation of VSMCs was significantly reversed by gAd treatment. Along with the VSMCs calcification and the increase of Runx2 in β-Gp-exposed VSMCs, the activities of protein kinase B (AKT) and Wnt/β-catenin pathway were enhanced, but that were counteracted by the exposure of gAd in rat and human VSMCs. After administration with agonists of the Wnt (SKL2001) and AKT (SC79), there appeared more osteoblastic differentiation and higher expression of Runx2 in gAd-treated VSMCs, but showing lower impact in the presence of SC79 than that in the presence of SKL2001. In the in vivo experiments, intravenous injection of gAd also significantly inhibited VC and Runx2 level in uraemic rat in a dose-dependent manner, possibly through regulating Wnt/β-catenin pathway. This study demonstrates that gAd ameliorates osteoblastic differentiation of VSMCs possibly by blocking PI3K/AKT and Wnt/β-catenin signaling transduction. The findings provide an important foundation for gAd in treating VC in kidney diseases.


2014 ◽  
Vol 19 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Dongxing Zhu ◽  
Neil Charles Wallace Mackenzie ◽  
Catherine M. Shanahan ◽  
Rukshana C. Shroff ◽  
Colin Farquharson ◽  
...  

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii233-iii233
Author(s):  
Paola Ciceri ◽  
Francesca Elli ◽  
Monica Falleni ◽  
Delfina Tosi ◽  
Gaetano Bulfamante ◽  
...  

2016 ◽  
Vol 310 (9) ◽  
pp. H1107-H1117 ◽  
Author(s):  
Anand Lakhkar ◽  
Vidhi Dhagia ◽  
Sachindra Raj Joshi ◽  
Katherine Gotlinger ◽  
Dhara Patel ◽  
...  

20-Hydroxyeicosatetraeonic acid (20-HETE) produced by cytochrome P-450 monooxygenases in NADPH-dependent manner is proinflammatory, and it contributes to the pathogenesis of systemic and pulmonary hypertension. In this study, we tested the hypothesis that inhibition of glucose-6-phosphate dehydrogenase (G6PD), a major source of NADPH in the cell, prevents 20-HETE synthesis and 20-HETE-induced proinflammatory signaling that promotes secretory phenotype of vascular smooth muscle cells. Lipidomic analysis indicated that G6PD inhibition and knockdown decreased 20-HETE levels in pulmonary arteries as well as 20-HETE-induced 1) mitochondrial superoxide production, 2) activation of mitogen-activated protein kinase 1 and 3, 3) phosphorylation of ETS domain-containing protein Elk-1 that activate transcription of tumor necrosis factor-α gene ( Tnfa), and 4) expression of tumor necrosis factor-α (TNF-α). Moreover, inhibition of G6PD increased protein kinase G1α activity, which, at least partially, mitigated superoxide production and Elk-1 and TNF-α expression. Additionally, we report here for the first time that 20-HETE repressed miR-143, which suppresses Elk-1 expression, and miR-133a, which is known to suppress synthetic/secretory phenotype of vascular smooth muscle cells. In summary, our findings indicate that 20-HETE elicited mitochondrial superoxide production and promoted secretory phenotype of vascular smooth muscle cells by activating MAPK1-Elk-1, all of which are blocked by inhibition of G6PD.


2011 ◽  
Vol 80 (7) ◽  
pp. 731-739 ◽  
Author(s):  
Erzsébet Zavaczki ◽  
Viktória Jeney ◽  
Anupam Agarwal ◽  
Abolfazl Zarjou ◽  
Melinda Oros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document