Species turnover drives β-diversity patterns across multiple spatial and temporal scales in Great Lake Coastal Wetland Communities

Hydrobiologia ◽  
2016 ◽  
Vol 777 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Thomas A. Langer ◽  
Brent A. Murry ◽  
Kevin L. Pangle ◽  
Donald G. Uzarski
Author(s):  
Pedro Giovâni da Silva

β-diversity is a key measure to understand biodiversity patterns across spatial and temporal scales. In this study, two published datasets on dung beetle (Coleoptera: Scarabaeinae) from Brazilian Pampa are re-analyzed aiming to investigate the role of β-diversity process-related components based on composition- and abundance-based approaches for both spatial (grassland-forest ecotone) and temporal (samplings along a year) scales. Dung beetles were sampled in a grassland-forest ecotone in October 2006 and in a grassland area monthly during an entire year (December 2006 to November 2007), using baited pitfall traps. β-diversity was decomposed into turnover and nestedness-resultant components based on Jaccard dissimilarity coefficient, and also into balanced variation in abundance and abundance gradients based on Bray-Curtis dissimilarity coefficient. Both environmental (spatial scale) and climatic (temporal scale) differences affected dung beetles similarly in terms of species replacement and nestedness patterns, and similarly in terms of variation in abundance and abundance gradients. For both spatial and temporal approach, the species turnover and the variation in species abundances were higher, while nestedness patterns and abundance gradients were of minor relative importance.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1984
Author(s):  
Anthi Oikonomou ◽  
Konstantinos Stefanidis

Disentangling the main drivers of species richness and community composition is a central theme in ecology. Freshwater biodiversity patterns have been poorly explored; yet, it has been shown that different freshwater biota have different, often contrasting responses to environmental gradients. In this study, we investigated the relative contribution of geographical and environmental (habitat-, climate- and water quality-related) factors/gradients in shaping the α- and β-diversity patterns of macrophytes and fish in sixteen natural freshwater lakes of an unexplored Balkan biodiversity hotspot, the Southern Balkan Peninsula. We employed generalized linear modeling to identify drivers of α-diversity, and generalized dissimilarity modeling to explore commonalities and dissimilarities of among-biota β-diversity. Species richness of both biota was significantly associated with lake surface area, whereas macrophytes had an inverse response to altitude, compared to fish. Both species turnover and nestedness significantly contributed to the total β-diversity of macrophytes. In contrast, species turnover was the most significant contributor to the total fish β-diversity. We found that the compositional variation of macrophytes is primarily limited by dispersal and ultimately shaped by environmental drivers, resulting in spatially structured assemblages. Fish communities were primarily shaped by altitude, highlighting the role of species sorting. We conclude that among-biota diversity patterns are shaped by different/contrasting factors, and, thus, effective/sustainable conservation strategies should encompass multiple aquatic biota.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0195565 ◽  
Author(s):  
Marcel Serra Coelho ◽  
Marco Antônio Alves Carneiro ◽  
Cristina Alves Branco ◽  
Rafael Augusto Xavier Borges ◽  
Geraldo Wilson Fernandes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Subzar Ahmad Nanda ◽  
Manzoor-ul Haq ◽  
S. P. Singh ◽  
Zafar A. Reshi ◽  
Ranbeer S. Rawal ◽  
...  

AbstractUnderstanding the species richness and β-diversity patterns along elevation gradients can aid in formulating effective conservation strategies particularly in areas where local anthropogenic stresses and climate change are quite significant as in the Himalaya. Thus, we studied macrolichen richness and β-diversity along elevational gradients at three sites, namely Kashmir (2200 to 3800 m a.m.s.l), Uttarakhand (2000–3700 m a.m.s.l) and Sikkim (1700 to 4000 m a.m.s.l) which cover much of the Indian Himalayan Arc. In all, 245 macrolichen species belonging to 77 genera and 26 families were collected from the three sites. Only 11 species, 20 genera and 11 families were common among the three transects. Despite the differences in species composition, the dominant functional groups in the three sites were the same: foliose, fruticose and corticolous forms. The hump-shaped elevation pattern in species richness was exhibited by most of the lichen groups, though an inverse hump-shaped pattern was also observed in certain cases. β-diversity (βsor) based on all pairs of comparisons along an elevation gradient varied from 0.48 to 0.58 in Kashmir, 0.03 to 0.63 in Uttarakhand and 0.46 to 0.77 in Sikkim. The contribution of turnover to β-diversity was more than nestedness at all the three transects. Along elevation β-diversity and its components of turnover and nestedness varied significantly with elevation. While species turnover increased significantly along the elevation in all the three transects, nestedness decreased significantly in Kashmir and Sikkim transects but increased significantly in the Uttarakhand transect. Except for the Kashmir Himalayan elevation transect, stepwise β-diversity and its components of turnover and nestedness did not vary significantly with elevation. The present study, the first of its kind in the Himalayan region, clearly brings out that macrolichen species richness, β-diversity, and its components of turnover and nestedness vary along the elevation gradients across the Himalayan Arc. It also highlights that contribution of turnover to β-diversity is higher in comparison to nestedness at all the three transects. The variations in species richness and diversity along elevation gradients underpin the importance of considering elevational gradients in planning conservation strategies.


2018 ◽  
Author(s):  
Luca Appolloni

1. Although it is widely recognized that protection may enhance size, abundance, and diversity offish, its effect on spatial heterogeneity of fish assemblages and species turnover is still poorlyunderstood.2. Here the effect of full protection within a Mediterranean marine protected area on β‐diversity patterns of fish assemblages along a depth gradient comparing a no‐take zone with multiple unprotected areas is explored. The no‐take zone showed significantly higher synecological parameters, higher β‐diversity among depths, and lower small‐scale heterogeneity of fish assemblages relative to unprotected areas.3. Such patterns might likely depend on the high level of fishing pressure outside the no‐takezone, as also abundance‐biomass curves seemed to indicate. Results suggested that full protection could play a role in maintaining high β‐diversity, thus reducing the fragility of marine communities and ecosystems, and spatial heterogeneity may represent a reliable predictor of how management actions could provide insurance against undesirable phase shifts.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Zarai Besma ◽  
Walter Christian ◽  
Michot Didier ◽  
Montoroi Jean Pierre ◽  
Hachicha Mohamed

2017 ◽  
Vol 63 (2) ◽  
pp. 8-16 ◽  
Author(s):  
Corrado Battisti ◽  
Marco Giardini ◽  
Francesca Marini ◽  
Lorena Di Rocco ◽  
Giuseppe Dodaro ◽  
...  

We reported a study on breeding birds occurring inside an 80 m-deep karst sinkhole, with the characterization of the assemblages recorded along its semi-vertical slopes from the upper edge until the bottom. The internal sides of the sinkhole have been vertically subdivided in four belts about 20 m high. The highest belt (at the upper edge of the cenote) showed the highest values in mean number of bird detections, mean and normalized species richness, and Shannon diversity index. The averaged values of number of detections and species richness significantly differ among belts. Species turnover (Cody’s β-diversity) was maximum between the highest belts. Whittaker plots showed a marked difference among assemblages shaping from broken-stick model to geometric series, and explicited a spatial progressive stress with a disruption in evenness towards the deepest belts. Bird assemblages evidenced a nested subset structure with deeper belts containing successive subsets of the species occurring in the upper belts. We hypothesize that, at least during the daytime in breeding season, the observed non-random distribution of species along the vertical stratification is likely due to (i) the progressive simplification both of the floristic composition and vegetation structure, and (ii) the paucity of sunlight as resources from the upper edge to the inner side of the cenote.


2008 ◽  
Vol 1 (2) ◽  
pp. 81-88 ◽  
Author(s):  
C. Zevenbergen ◽  
W. Veerbeek ◽  
B. Gersonius ◽  
S. Van Herk

Sign in / Sign up

Export Citation Format

Share Document