Short-term effects of very heavy rainfall events on the water quality of a shallow coastal lagoon

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Raquel A. F. Neves ◽  
Luciano N. Santos
RBRH ◽  
2016 ◽  
Vol 21 (4) ◽  
pp. 653-665
Author(s):  
Rubia Girardi ◽  
Adilson Pinheiro ◽  
Edson Torres ◽  
Vander Kaufmann ◽  
Luis Hamilton Pospissil Garbossa

ABSTRACT Studies carried out over short time intervals assist in understanding the biogeochemical processes occurring relatively fast in natural waters. High frequency monitoring shows a greater variability in the water quality during and immediately after heavy rainfall events. This paper presents an assessment of the surface water quality parameters in the Atlantic Forest biome, caused by heavy rainfall events. The work was developed in two fluviometric sections of the Concordia River watershed, located in the state of Santa Catarina, southern Brazil. The spatial distribution of land use shows the predominance of Atlantic Forest in fluviometric section 1 (FS1) and pasture, forestry, agriculture, and Atlantic Forest in fluviometric section 2 (FS2). In each selected heavy rainfall event, the evolution rainfall height, the water level, and physicochemical parameters of water were analyzed. In all events, the water quality changed due to the heavy rainfall. After the events, an increase in water level and turbidity in both fluviometric sections were detected. In addition, the ammonium ion concentration increased in the river, and the pH value and nitrate concentration decreased. The electrical conductivity presented different behavior in each section. The dissolved oxygen concentration increased in 19 of 27 events. The principal component (PC1) correlated with the turbidity in FS1, and it correlated with level, turbidity, and pH in FS2.


2018 ◽  
Vol 2017 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Alrun Jasper-Tönnies ◽  
Sandra Hellmers ◽  
Thomas Einfalt ◽  
Alexander Strehz ◽  
Peter Fröhle

Abstract Sophisticated strategies are required for flood warning in urban areas regarding convective heavy rainfall events. An approach is presented to improve short-term precipitation forecasts by combining ensembles of radar nowcasts with the high-resolution numerical weather predictions COSMO-DE-EPS of the German Weather Service. The combined ensemble forecasts are evaluated and compared to deterministic precipitation forecasts of COSMO-DE. The results show a significantly improved quality of the short-term precipitation forecasts and great potential to improve flood warnings for urban catchments. The combined ensemble forecasts are produced operationally every 5 min. Applications involve the Flood Warning Service Hamburg (WaBiHa) and real-time hydrological simulations with the model KalypsoHydrology.


2019 ◽  
Vol 674 ◽  
pp. 615-622 ◽  
Author(s):  
M.E. Lucas-Borja ◽  
P.A. Plaza-Álvarez ◽  
J. Gonzalez-Romero ◽  
J. Sagra ◽  
R. Alfaro-Sánchez ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2012 ◽  
Vol 69 (2) ◽  
pp. 521-537 ◽  
Author(s):  
Christopher A. Davis ◽  
Wen-Chau Lee

Abstract The authors analyze the mesoscale structure accompanying two multiday periods of heavy rainfall during the Southwest Monsoon Experiment and the Terrain-Induced Mesoscale Rainfall Experiment conducted over and near Taiwan during May and June 2008. Each period is about 5–6 days long with episodic heavy rainfall events within. These events are shown to correspond primarily to periods when well-defined frontal boundaries are established near the coast. The boundaries are typically 1 km deep or less and feature contrasts of virtual temperature of only 2°–3°C. Yet, owing to the extremely moist condition of the upstream conditionally unstable air, these boundaries appear to exert a profound influence on convection initiation or intensification near the coast. Furthermore, the boundaries, once established, are long lived, possibly reinforced through cool downdrafts and prolonged by the absence of diurnal heating over land in generally cloudy conditions. These boundaries are linked phenomenologically with coastal fronts that occur at higher latitudes.


Sign in / Sign up

Export Citation Format

Share Document