Synthesis of phased array antenna for side lobe level reduction using the differential evolution algorithm

2020 ◽  
Vol 23 (2) ◽  
pp. 337-342
Author(s):  
Ravi Tej ◽  
K. Ch. Sri Kavya ◽  
Sarat K. Kotamraju
2018 ◽  
Vol 7 (3.31) ◽  
pp. 16
Author(s):  
N Venkateswara rao ◽  
G Challa Ram

In an application like radar there is a need for a wide range of Beam widths depending on whether the radar is operating in search mode or tracking mode. Wide range of beam widths can be achieved by using optimization algorithms like Biogeography-based optimization (BBO) and Differential Evolution Algorithm (DE). The desired beam width should be achieved without any significant increase in the side lobe level (SLL). This can be done by optimizing both SLL and FNBW simultaneously. Synthesis of linear array antenna for a fixed range of beam width is obtained by using the proposed methodology. The results for simultaneous optimization of FNBW and SLL using BBO and DE algorithms are compared.  


2019 ◽  
Vol 9 (20) ◽  
pp. 4204 ◽  
Author(s):  
Hojoo Lee ◽  
Sungpeel Kim ◽  
Jaehoon Choi

In this paper, a 28 GHz fifth-generation (5G) phased array antenna with air-hole slots for beam width enhancement is proposed. The proposed antenna consists of eight dipole radiators on a mobile handset-sized ground with air-hole slots between the two adjacent elements for enhancing the half power beam width (HPBW) in the elevation plane. The dimensions of the proposed antenna are 130 mm × 42 mm × 0.127 mm. The proposed array antenna satisfies a −10 dB reflection coefficient in the frequency range from 27.2 to 29.2 GHz with a peak gain of 10.33 dBi and a side lobe level (SLL) of 13 dB. In addition to its good performance, the proposed antenna has a very wide HPBW (measured) in the elevation plane, up to 219 degree with a scan coverage of ±45 degree in the azimuth plane. The proposed antenna demonstrates excellent hemispheric beam coverage for 5G mobile handset devices and can enable cost-effective mass production.


Sign in / Sign up

Export Citation Format

Share Document