Two-Fluid Cosmological Models in Kaluza-Klein Space Time

2013 ◽  
Vol 52 (11) ◽  
pp. 3999-4007 ◽  
Author(s):  
G. C. Samanta ◽  
S. Debata
2011 ◽  
Vol 50 (6) ◽  
pp. 1846-1851 ◽  
Author(s):  
K. S. Adhav ◽  
S. M. Borikar ◽  
M. S. Desale ◽  
R. B. Raut

2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


2007 ◽  
Vol 16 (10) ◽  
pp. 1683-1704 ◽  
Author(s):  
FRANCESCO CANNATA ◽  
ALEXANDER Y. KAMENSHCHIK

We discuss the phenomenon of the smooth dynamical gravity induced crossing of the phantom divide line in a framework of simple cosmological models where it appears to occur rather naturally, provided the potential of the unique scalar field has some kind of cusp. The behavior of cosmological trajectories in the vicinity of the cusp is studied in some detail and a simple mechanical analogy is presented. The phenomenon of certain complementarity between the smoothness of the space–time geometry and matter equations of motion is elucidated. We introduce a network of cosmological histories and qualitatively describe some of its properties.


Sign in / Sign up

Export Citation Format

Share Document