Improvement of High-Capacity Three-Party Quantum Secret Sharing with Single Photons in both the Polarization and the Spatial-Mode Degrees of Freedom

2020 ◽  
Vol 59 (7) ◽  
pp. 2208-2213
Author(s):  
Hong-Ming Pan
2009 ◽  
Vol 18 (11) ◽  
pp. 4690-4694 ◽  
Author(s):  
Gu Bin ◽  
Li Chuan-Qi ◽  
Xu Fei ◽  
Chen Yu-Lin

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 376
Author(s):  
Natalia Herrera Valencia ◽  
Vatshal Srivastav ◽  
Matej Pivoluska ◽  
Marcus Huber ◽  
Nicolai Friis ◽  
...  

Photons offer the potential to carry large amounts of information in their spectral, spatial, and polarisation degrees of freedom. While state-of-the-art classical communication systems routinely aim to maximize this information-carrying capacity via wavelength and spatial-mode division multiplexing, quantum systems based on multi-mode entanglement usually suffer from low state quality, long measurement times, and limited encoding capacity. At the same time, entanglement certification methods often rely on assumptions that compromise security. Here we show the certification of photonic high-dimensional entanglement in the transverse position-momentum degree-of-freedom with a record quality, measurement speed, and entanglement dimensionality, without making any assumptions about the state or channels. Using a tailored macro-pixel basis, precise spatial-mode measurements, and a modified entanglement witness, we demonstrate state fidelities of up to 94.4% in a 19-dimensional state-space, entanglement in up to 55 local dimensions, and an entanglement-of-formation of up to 4 ebits. Furthermore, our measurement times show an improvement of more than two orders of magnitude over previous state-of-the-art demonstrations. Our results pave the way for noise-robust quantum networks that saturate the information-carrying capacity of single photons.


Sign in / Sign up

Export Citation Format

Share Document