Photoelastic determination of dynamic crack-tip stresses in an anisotropic plate

2006 ◽  
Vol 42 (5) ◽  
pp. 574-581 ◽  
Author(s):  
M. P. Malezhik ◽  
O. P. Malezhik ◽  
I. S. Chernyshenko
2009 ◽  
Vol 36 (4) ◽  
pp. 299-327 ◽  
Author(s):  
R. Nikolic ◽  
Jelena Djokovic

In this paper is presented the new approach to asymptotic analysis of the stress and strain fields around a crack tip that is propagating dynamically along a bimaterial interface. Through asymptotic analysis the problem is being reduced to solving the Riemann-Hilbert's problem, what yields the strain potential that is used for determination of the strain field around a crack tip. The considered field is that of a dynamically propagating crack with a speed that is between zero and shear wave speed of the less stiffer of the two materials, bound along the interface. Using the new approach in asymptotic analysis of the strain field around a tip of a dynamically propagating crack and possibilities offered by the Mathematica programming package, the results are obtained that are compared to both experimental and numerical results on the dynamic interfacial fracture known from the literature. This comparison showed that it is necessary to apply the complete expression obtained by asymptotic analysis of optical data and not only its first term as it was done in previous analyses.


Author(s):  
David Grégoire ◽  
Hubert Maigre ◽  
Fabrice Morestin

The determination of relevant constitutive crack propagation laws under dynamic loading is a rather challenging operation. In dynamic impact cases, the variations of propagation parameters and exact crack positions are difficult to control. This paper focuses on different techniques for measuring accurate crack tip position histories in dynamic crack propagation experiments. Two different methods are considered: very accurate crack tip localization by optical displacement sensors is first described for transparent materials; then, an automatic method based on digital image correlation is presented for crack localization in all brittle materials whatever their opacity.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


2010 ◽  
Vol 97-101 ◽  
pp. 2748-2751
Author(s):  
Xin Song ◽  
Jing Zhong Xiang ◽  
Jia Zhen Zhang

Fatigue crack propagation of aluminium alloy 7049-OA has been studied by non-linear finite element business-oriented software ABAQUS, and elastic-plastic finite element models of static fatigue crack and dynamic fatigue crack of center crack panel (CCP) specimens are also built. Based on the finite element computation results, the differences of stress and crack opening displacement around crack tip of static crack model have been compared with those of dynamic crack model. The compared results showed that the finite element computation results of dynamic crack model can be replaced by the results calculated by the static crack model. Fatigue crack tip parameters of aluminium alloy CCP specimens can be calculated by elastic-plastic finite element model of static crack. This is an effective method to cut down the computation expense and promote the computational efficiency.


1993 ◽  
Vol 66 (4) ◽  
pp. 634-645
Author(s):  
N. Nakajima ◽  
J. L. Liu

Abstract The effect of gel on the fracture toughness of four PVC/NBR (50/50) blends was characterized by two different J- integral methods. Three of these blends are compatible blends with 33% acrylonitrile in NBRs, and the fourth with 21% acrylonitrile content, is an incompatible blend. Two types of gel are involved in this study microgels and macrogels. The J-integral methods are (1) conventional method proposed by Bagley and Landes and (2) crack initiation locus method proposed by Kim and Joe. The same load-displacement curves are used in both methods. However, the latter eliminates the energy dissipation away from the crack tip in the determination of Jc, while the former does not. Both methods produced almost the same results indicating that the energy dissipation away from the crack tip is negligible in these samples. The fracture toughness of a macrogel-containing blend is much greater than that of a microgel-containing blend, which, in turn, is only slightly greater than that of a gel-free blend. This implies that the two gel-containing blends have different fracture processes. The incompatible blend has the lowest fracture toughness due to weak interaction at the boundaries of the two phases.


Sign in / Sign up

Export Citation Format

Share Document