Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline

Author(s):  
Ying Zhen ◽  
Yizhen Zu ◽  
Yuguang Cao ◽  
Ruiyan Niu
Author(s):  
David Grégoire ◽  
Hubert Maigre ◽  
Fabrice Morestin

The determination of relevant constitutive crack propagation laws under dynamic loading is a rather challenging operation. In dynamic impact cases, the variations of propagation parameters and exact crack positions are difficult to control. This paper focuses on different techniques for measuring accurate crack tip position histories in dynamic crack propagation experiments. Two different methods are considered: very accurate crack tip localization by optical displacement sensors is first described for transparent materials; then, an automatic method based on digital image correlation is presented for crack localization in all brittle materials whatever their opacity.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


1995 ◽  
Vol 409 ◽  
Author(s):  
W. C. Morrey ◽  
L. T. Wille

AbstractUsing large-scale molecular dynamics simulation on a massively parallel computer, we have studied the initiation of cracking in a Monel-like alloy of Cu-Ni. In a low temperature 2D sample, fracture from a notch starts at a little beyond 2.5% critical strain when the propagation direction is perpendicular to a cleavage plane. We discuss a method of characterizing crack tip position using a measure of area around the crack tip.


2010 ◽  
Vol 97-101 ◽  
pp. 2748-2751
Author(s):  
Xin Song ◽  
Jing Zhong Xiang ◽  
Jia Zhen Zhang

Fatigue crack propagation of aluminium alloy 7049-OA has been studied by non-linear finite element business-oriented software ABAQUS, and elastic-plastic finite element models of static fatigue crack and dynamic fatigue crack of center crack panel (CCP) specimens are also built. Based on the finite element computation results, the differences of stress and crack opening displacement around crack tip of static crack model have been compared with those of dynamic crack model. The compared results showed that the finite element computation results of dynamic crack model can be replaced by the results calculated by the static crack model. Fatigue crack tip parameters of aluminium alloy CCP specimens can be calculated by elastic-plastic finite element model of static crack. This is an effective method to cut down the computation expense and promote the computational efficiency.


Author(s):  
Sayyed H. Hashemi ◽  
Ian C. Howard ◽  
John R. Yates ◽  
Robert M. Andrews ◽  
Alan M. Edwards

Failure information from recent full-scale burst experiments on modern TMCP gas pipeline steels having a yield strength level of 690MPa and higher has shown that the CTOA fracture criterion can be effectively used to predict the arrest/propagation behaviour of the pipe against possible axial ductile fractures. The use of CTOA as an alternative or an addition to the Charpy V-notch and DWTT fracture energy in pipelines is currently under review. A significant difficulty currently limiting the more extensive use of CTOA in pipeline assessment is its practical evaluation either in the real structure or in a laboratory scale test. Different combinations of experimental and finite element analyses have been proposed for the measurement of the CTOA of a material. Although most of these models are able to predict the CTOA effectively, their implementation requires extensive calibration processes using the test load-deflection data. The authors have recently developed a novel test technique for direct measurement of the steady state CTOA using a modified double cantilever beam geometry. The technique uses optical imaging to register the uniform deformation of a fine square grid scored on the sides of the specimen. The slope of the deformed gridlines near the crack tip is measured during crack growth from captured images. Its value is a representative of the material CTOA. This paper presents recent results from the implementation of the technique to determine the steady state CTOA (steady state in this work refers to regions of ductile crack growth where CTOA values are constant and independent of crack length) of API X80 and X100 grade gas pipeline steels. In each case the approach was able to produce large amounts of highly consistent CTOA data from both sides of the test sample even from a single specimen. This extensive data set allowed an evaluation of the variance of the stable CTOA as the crack grew through the microstructure. The test method generated a steady CTOA value of 11.1° for X80 and 8.5° for X100 steels tested, respectively.


2009 ◽  
Vol 36 (4) ◽  
pp. 299-327 ◽  
Author(s):  
R. Nikolic ◽  
Jelena Djokovic

In this paper is presented the new approach to asymptotic analysis of the stress and strain fields around a crack tip that is propagating dynamically along a bimaterial interface. Through asymptotic analysis the problem is being reduced to solving the Riemann-Hilbert's problem, what yields the strain potential that is used for determination of the strain field around a crack tip. The considered field is that of a dynamically propagating crack with a speed that is between zero and shear wave speed of the less stiffer of the two materials, bound along the interface. Using the new approach in asymptotic analysis of the strain field around a tip of a dynamically propagating crack and possibilities offered by the Mathematica programming package, the results are obtained that are compared to both experimental and numerical results on the dynamic interfacial fracture known from the literature. This comparison showed that it is necessary to apply the complete expression obtained by asymptotic analysis of optical data and not only its first term as it was done in previous analyses.


2020 ◽  
pp. 112972982091532
Author(s):  
R Haridian Sosa Barrios ◽  
David Lefroy ◽  
Damien Ashby ◽  
Neill Duncan

Jugular Tesio lines (TesioCaths; MedCOMP, Harleysville, PA, USA) are frequently used as permanent vascular accesses in haemodialysis patients. During the insertion procedure, arrhythmias are a relatively common complication, usually related to an excessively advanced catheter tip, without major consequences. We present two cases of life-threatening arrhythmias triggered by the Tesio catheter eccentric high-velocity jet of blood resolved after reposition of the catheter without further episodes, despite both lines being inserted under real-time ultrasound and fluoroscopic guidance. We believe dialysis lines should be checked for tip position even when long-standing to prevent relevant complications due to catheter sliding.


Sign in / Sign up

Export Citation Format

Share Document