Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway

2019 ◽  
Vol 28 (1) ◽  
pp. 289-297 ◽  
Author(s):  
Xuejing Jia ◽  
Chao Zhang ◽  
Jiaolin Bao ◽  
Kai Wang ◽  
Yanbei Tu ◽  
...  
2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Yilong Wu ◽  
Zhiwei Liu ◽  
Weifang Wu ◽  
Su Lin ◽  
Nanwen Zhang ◽  
...  

Purpose: Sepsis is a systemic inflammatory response caused by infection. Curcumin is known to have antioxidant and anti-inflammatory activities. FM0807, a curcumin derivative, was investigated in the present study to determine its effect on cytokines and the possible molecular mechanism. Main methods: The experiments were carried out in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cell viability was measured by MTT assay. ELISA, Griess assays, fluorescence-based quantitative PCR, flow cytometric analysis, 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) experiments, and Western blotting were carried out to assess the potential effects of FM0807 on LPS-induced RAW 264.7 cells. Significant findings: FM0807 had no cytotoxic effects on RAW 264.7 cells. Furthermore, pretreatment with FM0807 inhibited the inflammatory factor tumor necrosis factor-α (TNF-α), interleukin (IL) 1β (IL-1β), IL-6, and inducible nitric oxide synthase (iNOS) at the protein and gene levels. FM0807 also inhibited the production of reactive oxygen species (ROS) and apoptosis. In addition, the activation of the ROS/JNK (c-jun NH2-terminal kinase)/p53 signaling pathway was inhibited by FM0807 in RAW 264.7 cells in vitro. Conclusion: FM0807 has anti-inflammatory activity in vitro, which suggests a potential clinical application in sepsis. The anti-inflammatory activity of FM0807 may be mediated by the ROS/JNK/p53 signaling pathway.


Steroids ◽  
2021 ◽  
pp. 108830
Author(s):  
Xiaorui Cai ◽  
Fei Sha ◽  
Chuanyi Zhao ◽  
Zhiwei Zheng ◽  
Shulin Zhao ◽  
...  

2007 ◽  
Vol 36 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Thongchai Taechowisan ◽  
Pittaya Tuntiwachwuttikul ◽  
Chunhua Lu ◽  
Yuemao Shen ◽  
Saisamorn Lumyong ◽  
...  

Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

2019 ◽  
Vol 09 (04) ◽  
pp. 398-421 ◽  
Author(s):  
Thongchai Taechowisan ◽  
Winyou Puckdee ◽  
Watcharee Waratchareeyakul ◽  
Waya S. Phutdhawong

KSBB Journal ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 123-129
Author(s):  
Hyehyun Hong ◽  
Taejin Park ◽  
Min-Sung Kang ◽  
Seung-Young Kim

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


2017 ◽  
Vol 26 (3) ◽  
pp. 791-799 ◽  
Author(s):  
Jisu Kim ◽  
Seong Hoon Jeong ◽  
Woojae Lee ◽  
Hyeyoung Min

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dong-Woo Lim ◽  
Hee-Jin Choi ◽  
Sun-Dong Park ◽  
Hyuck Kim ◽  
Ga-Ram Yu ◽  
...  

Despite its deleterious effects on living cells, oxidative stress plays essential roles in normal physiological processes and provides signaling molecules for cell growth, differentiation, and inflammation. Macrophages are equipped with antioxidant mechanisms to cope with intracellular ROS produced during immune response, and Nrf2 (NF-E2-related factor 2)/HO-1 (heme oxygenase-1) pathway is an attractive target due to its protective effect against ROS-induced cell damage in inflamed macrophages. We investigated the effects of ethanol extract of A. villosum (AVEE) on lipopolysaccharide- (LPS-) stimulated inflammatory responses generated via the Nrf2/HO-1 signaling pathway in murine peritoneal macrophages and RAW 264.7 cells. AVEE was found to suppress the NF-κB signaling pathway, thus, to reduce proinflammatory cytokine, nitric oxide, and prostaglandin levels in peritoneal macrophages and Raw 264.7 cells treated with LPS, and to enhance HO-1 expression by activating Nrf2 signaling. Furthermore, these anti-inflammatory effects of AVEE were diminished when cells were pretreated with SnPP (a HO-1 inhibitor). HPLC analysis revealed AVEE contained quercetin, a possible activator of the Nrf2/HO-1 pathway. These results show A. villosum ethanol extract exerts anti-inflammatory effects by activating the Nrf2/HO-1 pathway in LPS-stimulated macrophages.


Sign in / Sign up

Export Citation Format

Share Document