p53 signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 155)

H-INDEX

23
(FIVE YEARS 8)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anqi Ge ◽  
Lifang Liu ◽  
Xian’guang Deng ◽  
Jun Luo ◽  
Yanghua Xu

Objective. To explore the mechanism of baicalin intervention in breast cancer based on microRNA microarrays. Methods. The inhibitory rate of baicalin intervention in MCF-7 breast cancer cells was determined by MTT. Then, the miRNA microarrays were used to validate the key microRNAs. After that, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate microRNA, hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-miR-7t. Finally, the potential targets of these key microRNAs are predicted by miRWalk, and DAVID was utilized for gene ontology (GO) enrichment analysis and pathway enrichment analysis. Results. Baicalin may inhibit the proliferation of MCF-7 cells in a dose-dependent and time-dependent manner. The concentration of baicalin 150 μmol/L was determined for the subsequent miRNA chip research. A total of 92 upregulated microRNAs and 35 downregulated microRNAs were obtained. The upregulated miRNAs include hsa-miR-6799-5p, hsa-miR-6126, hsa-miR-4792, hsa-miR-6848-5p, hsa-miR-3197, hsa-miR-6779-5p, and hsa-miR -654-5p. The downregulated miRNAs include hsa-miR-3911, hsa-miR-504-5p, hsa-miR-30a-3p, hsa-miR-193b-3p, and hsa-miR-181b-5p. Then, differentially expressed miRNA was verified by qRT-PCR. The results showed that the expression of hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-let-7c was upregulated ( P < 0.05 ), which was consistent with the results of the miRNA microarray. The enrichment analysis showed that baicalin might regulate the DNA-templated proliferation, DNA-templated transcription, p53 signaling pathway, etc., of MCF-7 breast cancer cells through miRNA. Conclusion. Baicalin inhibits the proliferation of breast cancer cells. It may achieve antitumor effects through regulating microRNAs so as to affect the DNA replication (such as cellular response to DNA damage stimulus and DNA binding), RNA transcription (such as regulation of transcription, DNA-templated, transcription from RNA polymerase II promoter, and transcription factor binding), protein synthesis (such as mRNA binding, Golgi apparatus, and protein complex), endocytosis, pathways in cancer, p53 signaling pathway, and so on.


Author(s):  
Ольга Фалалеевна Воропаева ◽  
Ксения Сергеевна Гаврилова

Работа посвящена численному исследованию известной математической модели динамики системы p53-Mdm2-Wip1 при различных воздействиях, приводящих к повреждениям ДНК. Главное внимание уделено ранее не рассматривавшимся методическим аспектам - оценке чувствительности модели, качественному анализу свойств решения в биологически адекватном диапазоне значений параметров, анализу применимости модели к описанию критических состояний системы, связанных с известными дегенеративными заболеваниями. Показано, что простейшая модификация исходной модели делает ее существенно более эффективным инструментом для численного анализа широкого диапазона состояний системы p53-Mdm2-Wip1 In the context of the survival and death of cells with DNA damage, a special role is assigned to the p53 protein. The management of p53 and its inhibitors can provide a protective effect in a wide range of degenerative diseases, such as cancer, infarctions, and dementia. Therefore, there are increased requirements for mathematical models designed to study the mechanism of functioning of the p53 signaling pathway. Our work is devoted to the study of the properties of the well-known mathematical model of the dynamics of the p53-Mdm2-Wip1 system under various influences leading to DNA damage. A simple modification of the model is proposed. The main attention is paid to the analysis of the sensitivity and qualitative properties of solutions, as well as the validation of the model before and after its modification. In numerical experiments, it was found that within the framework of the accepted models, the stationary state of the p53-Mdm2-Wip1 system can be unstable to negligible changes in the initial conditions, so that the system can function under the same parameter values according to the bifurcation scenario with a doubling of the period. The mathematical conditions under which the multiplicity of solutions and complex dynamic modes were detected allow for a biological interpretation as a reflection of the variability in the response of the p53 protein pathway to the damage signal. The range of applicability of the models was compared using the example of a wellknown laboratory experiment, in which the most complete set of observed in vitro and in vivo states of the p53-Wip1 system was demonstrated when irradiating cancer cells with wild-type p53. It is shown that the simplest modification of the original model significantly expands the scope of its applicability, allows describing the transition from normal to critical states of the system associated with known degenerative diseases. Thus, the modified model is a more effective tool for numerical analysis of a wide range of states of the p53-Mdm2-Wip1 system


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung Kyoung Kim ◽  
Seung Min Jung ◽  
Kyung-Su Park ◽  
Ki-Jo Kim

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic targets. Methods Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrichment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were performed, and the association of enriched pathways and clinical parameters was evaluated. Results A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised clustering. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 signaling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational drugs showed differential diffusion scores in terms of their target molecules. Conclusions An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct pathobiological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes and the selection of therapeutic targets in IPF patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chuanrui Ma ◽  
Jiaqing Xiang ◽  
Guixiao Huang ◽  
Yaxi Zhao ◽  
Xinyu Wang ◽  
...  

Background and purpose: FXR is a promising target for the treatment of human cholestatic liver disease (CLD). SIRT1 is a deacetylase which promotes FXR activity through deacetylating FXR. Pterostilbene (PTE) is an activator of SIRT1. However, the role of PTE in cholestasis has so far not been investigated. We examined whether PTE treatment alleviate liver injury in DDC or ANIT-induced experimental cholestasis, and explored the underlying mechanisms.Experimental approach: Mice with DDC- or ANIT-induced cholestasis were treated with different dose of PTE. Primary hepatocytes and bone marrow derived macrophages were used in vitro to assess the molecular mechanism by which PTE may improve CLD. Identical doses of UDCA or PTE were administered to DDC- or ANIT-induced cholestasis mice.Key results: PTE intervention attenuated DDC or ANIT-induced cholestasis. PTE inhibited macrophage infiltration and activation in mouse liver through the SIRT1-p53 signaling pathway, and it improved hepatic bile metabolism through the SIRT1-FXR signaling pathway. Compare with UDCA, the same doses of PTE was more effective in improving cholestatic liver injury caused by DDC or ANIT.Conclusion and implications: SIRT1 activation in macrophages may be an effective CLD treatment avenue. Using CLD models, we thus identified PTE as a novel clinical candidate compound for the treatment of CLD.


2021 ◽  
Author(s):  
PL Wei ◽  
Yifei Qi ◽  
Yupei Tan ◽  
Dehuai Long ◽  
Wenlong Xing ◽  
...  

Abstract Background Many experiments showed that Notopterygii Rhizoma Et Radix (NRR) can resist arrhythmia, but the mechanism of its action has not clear. Here, we investigated the possible mechanisms of NRR by network pharmacology and molecular docking and verified them experimentally. Methods Active componds and targets of NRR were retrieved by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database andAnalysis Platform, SymMap, and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases. Arrhythmia-related targets were acquired from Comparative Toxicogenomics Database (CTD) and GeneCards databases. Overlapping targets of NRR associated with arrhythmia were acquired via Venn diagram. DAVID was applied for GO and KEGG pathway analyses. Cytoscape software and its plug-in were used for PPI network construction, module division and hub nodes screening. AutoDock Vina and qRT-PCR were carried out for validation. Results The 21 active compounds and 57 targets were obtained. Of these, coumarin was the predominant category including 15 components and 31 targets. The 5 key targets of NRR in treating arrhythmia, and these targets are involved in the apoptotic process, extrinsic apoptotic signaling pathway in absence of ligand, endopeptidase activity involved in apoptotic process by cytochrome c. The main pathways are p53 signaling pathway, Hepatitis B and Apoptosis. The results of molecular docking and qRT-PCR display good effect on hub node regulation in NRR treatment. Conclusion NRR plays an important role in anti-apoptotic mediated by modulating p53 signaling pathway, which may provide insight into future research and clinical applications in arrhythmia therapy.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7002
Author(s):  
Longlin Zhang ◽  
Mengmeng Ma ◽  
Zhengyi Li ◽  
Haihan Zhang ◽  
Xi He ◽  
...  

L-theanine is a nonprotein amino acid found in tea leaves and has been widely used as a safe food additive in beverages or foods because of its varied bioactivities. The aim of this study was to reveal the in vitro gastrointestinal protective effects of L-theanine in DSS-induced intestinal porcine enterocyte (IPEC-J2) cell models using molecular and metabolic methods. Results showed that 2.5% dextran sulfate sodium (DSS) treatment inhibited the cell proliferation of IPEC-J2 and blocked the normal operation of the cell cycle, while L-theanine pretreatment significantly preserved these trends to exert protective effects. L-theanine pre-treatment also up-regulated the EGF, CDC2, FGF2, Rb genes and down-regulated p53, p21 proliferation-related mRNA expression in DSS-treated cells, in accompany with p53 signaling pathway inhibition. Meanwhile, metabolomics analysis revealed that L-theanine and DSS treated IPEC-J2 cells have different metabolomic profiles, with significant changes in the key metabolites involved in pyrimidine metabolism and amino acid metabolism, which play an important role in nucleotide metabolism. In summary, L-theanine has a beneficial protection in DSS-induced IPEC-J2 cells via promoting proliferation and regulating metabolism disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yubao Zhang ◽  
Xiaoran Ma ◽  
Huayao Li ◽  
Jing Zhuang ◽  
Fubin Feng ◽  
...  

Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.


Sign in / Sign up

Export Citation Format

Share Document