Optimization of synthesis condition of water-resistant and thin titanium oxide layer-coated Ni-rich layered cathode materials and their cathode performance

2018 ◽  
Vol 49 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Yubin Liu ◽  
Toyokazu Tanabe ◽  
Yuta Irii ◽  
Fumihiko Maki ◽  
Takashi Tsuda ◽  
...  
2002 ◽  
Vol 12 (3) ◽  
pp. 260-265 ◽  
Author(s):  
Huafu Kong ◽  
James L. Wilkinson ◽  
James Y. Coe ◽  
Xiaoping Gu ◽  
Myra Urness ◽  
...  

Purpose: Nitinol, a nickel-titanium alloy, is a valuable material in the construction of interventional endoluminal devices because of its biocompatibility, super elasticity, high resiliency and shape memory. The possibility of nickel toxicity has been raised with devices constructed of Nitinol. Our investigation examines the long-term corrosive behavior of this alloy in experimental and biological environments. Methods: We performed three levels of study. Microscopic examination was made of 64 devices of various sizes, randomly selected from 240 Amplatzer® Septal Occluders that had been exposed to saline solution at 37°C for fourteen months. All samples were studied by electron microscopy ranging from 50 to 5000 times magnification. We also studied microscopically 3 Amplatzer® devices explanted 18–36 months after implantation in dogs, and 2 Amplatzer Septal Occluders removed from patients 18 months (cardiac transplant) and 19 months (died of causes unrelated to device placement) after implantation, which were examined grossly and by electron microscopy up to 5000 times magnification. We then measured the levels of nickel in the blood using inductive plasma mass spectroscopy in 19 patients with implanted Amplatzer® devices, making measurements before and 6 months after implantation. Results: Electron microscopy showed an intact titanium oxide layer with no evidence of corrosion in vitro and in vivo. One explanted device in direct contact with the platinum leads of a pacemaker for eighteen months showed minor pitting of the titanium oxide layer believed to be galvanic in nature. No wire fractures were found in vitro after cycle testing with 400 million cycles, nor in devices taken from the animals and humans. Biochemical studies showed no significant elevation of levels of nickel levels after implantation. Conclusion: Nitinol wire of Amplatzer® septal occlusion devices is resistant to corrosion when exposed to physiologic saline solution, and in experimental animals as well as humans. A device in contact with a platinum pacemaker electrode developed minimal pitting of the titanium oxide layer, believed to be galvanic in nature and of no structural or clinical significance. There is no increase of concentrations of nickel in the blood of patients who have received Amplatzer® nitinol devices. These favorable testing results reveal that nickel-titanium is an inert, corrosion resistant alloy.


2002 ◽  
Vol 734 ◽  
Author(s):  
Kanji Tsuru ◽  
Shinji Takemoto ◽  
Tatsuhiro Yamamoto ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
...  

ABSTRACTWe examined blood compatibility of titanium oxide layer on stainless-steel (SUS316L). The oxide layers with varied thickness were yielded on SUS316L plates by dip-coating of sol-gel solution starting from tetraethyltitanate. The blood compatibility was evaluated in term of platelet adhesion using platelet rich plasma. With increase in the thickness of the oxide layer, the number of adherent platelets decreased rapidly, reached minimum around 150nm. This indicated that the thickness of titanium oxide layer affected platelet adhesion.


Author(s):  
Jae Sun Hwang ◽  
Sang Bae Lee ◽  
Keun Taek Oh ◽  
Kyoung Nam Kim ◽  
Kwang Mahn Kim

2009 ◽  
Vol 54 (27) ◽  
pp. 6983-6988 ◽  
Author(s):  
Wojciech Simka ◽  
Aleksander Iwaniak ◽  
Ginter Nawrat ◽  
Artur Maciej ◽  
Joanna Michalska ◽  
...  

2009 ◽  
Vol 21 (2) ◽  
pp. 655-663 ◽  
Author(s):  
Gérard Hélary ◽  
Flavie Noirclère ◽  
Josselin Mayingi ◽  
Brigitte Bacroix ◽  
Véronique Migonney

2007 ◽  
Vol 7 (1) ◽  
pp. 108-111 ◽  
Author(s):  
Byung-Hoon Kim ◽  
Young-Sun Jeon ◽  
Ju-Hyung Jeong ◽  
Jun-Hyung An ◽  
Kyung-Ok Jeon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document