In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases

2011 ◽  
Vol 25 (8) ◽  
pp. 743-752 ◽  
Author(s):  
Ivano Eberini ◽  
Simona Daniele ◽  
Chiara Parravicini ◽  
Cristina Sensi ◽  
Maria L. Trincavelli ◽  
...  
2016 ◽  
Vol 9 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Prashant Deshmukh ◽  
Sruthi Unni ◽  
Gopinatha Krishnappa ◽  
Balasundaram Padmanabhan

2020 ◽  
Vol 117 (46) ◽  
pp. 29133-29143
Author(s):  
Amanda K. Engstrom ◽  
Alicia C. Walker ◽  
Rohitha A. Moudgal ◽  
Dexter A. Myrick ◽  
Stephanie M. Kyle ◽  
...  

Tauopathies are a class of neurodegenerative diseases associated with pathological tau. Despite many advances in our understanding of these diseases, the direct mechanism through which tau contributes to neurodegeneration remains poorly understood. Previously, our laboratory implicated the histone demethylase LSD1 in tau-induced neurodegeneration by showing that LSD1 localizes to pathological tau aggregates in Alzheimer's disease cases, and that it is continuously required for the survival of hippocampal and cortical neurons in mice. Here, we utilize the P301S tauopathy mouse model to demonstrate that pathological tau can exclude LSD1 from the nucleus in neurons. In addition, we show that reducing LSD1 in these mice is sufficient to highly exacerbate tau-mediated neurodegeneration and tau-induced gene expression changes. Finally, we find that overexpressing LSD1 in the hippocampus of tauopathy mice, even after pathology has formed, is sufficient to significantly delay neurodegeneration and counteract tau-induced expression changes. These results suggest that inhibiting LSD1 via sequestration contributes to tau-mediated neurodegeneration. Thus, LSD1 is a promising therapeutic target for tauopathies such as Alzheimer's disease.


2019 ◽  
Author(s):  
Silvia Scaricamazza ◽  
Illari Salvatori ◽  
Giacomo Giacovazzo ◽  
Jean Philippe Loeffler ◽  
Frederique Renè ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


Sign in / Sign up

Export Citation Format

Share Document