scholarly journals Applying semantic web technologies to knowledge sharing in aerospace engineering

2008 ◽  
Vol 20 (5) ◽  
pp. 611-623 ◽  
Author(s):  
A.-S. Dadzie ◽  
R. Bhagdev ◽  
A. Chakravarthy ◽  
S. Chapman ◽  
J. Iria ◽  
...  
2010 ◽  
Vol 1 (3) ◽  
pp. 1-19 ◽  
Author(s):  
Weisen Guo ◽  
Steven B. Kraines

To promote global knowledge sharing, one should solve the problem that knowledge representation in diverse natural languages restricts knowledge sharing effectively. Traditional knowledge sharing models are based on natural language processing (NLP) technologies. The ambiguity of natural language is a problem for NLP; however, semantic web technologies can circumvent the problem by enabling human authors to specify meaning in a computer-interpretable form. In this paper, the authors propose a cross-language semantic model (SEMCL) for knowledge sharing, which uses semantic web technologies to provide a potential solution to the problem of ambiguity. Also, this model can match knowledge descriptions in diverse languages. First, the methods used to support searches at the semantic predicate level are given, and the authors present a cross-language approach. Finally, an implementation of the model for the general engineering domain is discussed, and a scenario describing how the model implementation handles semantic cross-language knowledge sharing is given.


Author(s):  
Weisen Guo ◽  
Steven B. Kraines

To promote global knowledge sharing, one should solve the problem that knowledge representation in diverse natural languages restricts knowledge sharing effectively. Traditional knowledge sharing models are based on natural language processing (NLP) technologies. The ambiguity of natural language is a problem for NLP; however, semantic web technologies can circumvent the problem by enabling human authors to specify meaning in a computer-interpretable form. In this paper, the authors propose a cross-language semantic model (SEMCL) for knowledge sharing, which uses semantic web technologies to provide a potential solution to the problem of ambiguity. Also, this model can match knowledge descriptions in diverse languages. First, the methods used to support searches at the semantic predicate level are given, and the authors present a cross-language approach. Finally, an implementation of the model for the general engineering domain is discussed, and a scenario describing how the model implementation handles semantic cross-language knowledge sharing is given.


Informatica ◽  
2015 ◽  
Vol 26 (2) ◽  
pp. 221-240 ◽  
Author(s):  
Valentina Dagienė ◽  
Daina Gudonienė ◽  
Renata Burbaitė

2006 ◽  
Vol 21 (1) ◽  
pp. 82-86 ◽  
Author(s):  
S. Stephens ◽  
A. Morales ◽  
M. Quinlan

Sign in / Sign up

Export Citation Format

Share Document