scholarly journals Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion

Author(s):  
Sebastian Larsen ◽  
Paul A. Hooper

AbstractHighly complex data streams from in-situ additive manufacturing (AM) monitoring systems are becoming increasingly prevalent, yet finding physically actionable patterns remains a key challenge. Recent AM literature utilising machine learning methods tend to make predictions about flaws or porosity without considering the dynamical nature of the process. This leads to increases in false detections as useful information about the signal is lost. This study takes a different approach and investigates learning a physical model of the laser powder bed fusion process dynamics. In addition, deep representation learning enables this to be achieved directly from high speed videos. This representation is combined with a predictive state space model which is learned in a semi-supervised manner, requiring only the optimal laser parameter to be characterised. The model, referred to as FlawNet, was exploited to measure offsets between predicted and observed states resulting in a highly robust metric, known as the dynamic signature. This feature also correlated strongly with a global material quality metric, namely porosity. The model achieved state-of-the-art results with a receiver operating characteristic (ROC) area under curve (AUC) of 0.999 when differentiating between optimal and unstable laser parameters. Furthermore, there was a demonstrated potential to detect changes in ultra-dense, 0.1% porosity, materials with an ROC AUC of 0.944, suggesting an ability to detect anomalous events prior to the onset of significant material degradation. The method has merit for the purposes of detecting out of process distributions, while maintaining data efficiency. Subsequently, the generality of the methodology would suggest the solution is applicable to different laser processing systems and can potentially be adapted to a number of different sensing modalities.

Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Author(s):  
Benjamin Molnar ◽  
Jarred C. Heigel ◽  
Eric Whitenton

This document provides details on the experiment and associated measurement files available fordownload in the dataset “In Situ Thermography During Laser Powder Bed Fusion of a Nickel Superalloy 625 Artifact with Various Overhangs and Supports.” The measurements were acquired during the fabrication of a small nickel superalloy 625 (IN625) artifact using a commercial laser powder bed fusion (LPBF) system. The artifact consists of two half-arch features with increasing slopes for overhangs. These overhangs range from 5° from vertical to 85° from vertical in increments of 10°. The artifact geometry and process are controlled to ensure consistent processing along the overhang geometry. This control enables the effect of overhang geometry and support structures to be isolated from effects of inter-layer scan strategy variations. The measurements include high-speed thermography of each layer, from which radiance temperature, cooling rate, and melt pool length are calculated.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Cang Zhao ◽  
Kamel Fezzaa ◽  
Ross W. Cunningham ◽  
Haidan Wen ◽  
Francesco De Carlo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document