scholarly journals In Situ Thermography During Laser Powder Bed Fusion of a Nickel Superalloy 625 Artifact with Various Overhangs and Supports

Author(s):  
Benjamin Molnar ◽  
Jarred C. Heigel ◽  
Eric Whitenton

This document provides details on the experiment and associated measurement files available fordownload in the dataset “In Situ Thermography During Laser Powder Bed Fusion of a Nickel Superalloy 625 Artifact with Various Overhangs and Supports.” The measurements were acquired during the fabrication of a small nickel superalloy 625 (IN625) artifact using a commercial laser powder bed fusion (LPBF) system. The artifact consists of two half-arch features with increasing slopes for overhangs. These overhangs range from 5° from vertical to 85° from vertical in increments of 10°. The artifact geometry and process are controlled to ensure consistent processing along the overhang geometry. This control enables the effect of overhang geometry and support structures to be isolated from effects of inter-layer scan strategy variations. The measurements include high-speed thermography of each layer, from which radiance temperature, cooling rate, and melt pool length are calculated.

Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1856
Author(s):  
Claudia Schwerz ◽  
Lars Nyborg

In situ monitoring of the melt pools in laser powder bed fusion (LPBF) has enabled the elucidation of process phenomena. There has been an increasing interest in also using melt pool monitoring to identify process anomalies and control the quality of the manufactured parts. However, a better understanding of the variability of melt pools and the relation to the incidence of internal flaws are necessary to achieve this goal. This study aims to link distributions of melt pool dimensions to internal flaws and signal characteristics obtained from melt pool monitoring. A process mapping approach is employed in the manufacturing of Hastelloy X, comprising a vast portion of the process space. Ex situ measurements of melt pool dimensions and analysis of internal flaws are correlated to the signal obtained through in situ melt pool monitoring in the visible and near-infrared spectra. It is found that the variability in melt pool dimensions is related to the presence of internal flaws, but scatter in melt pool dimensions is not detectable by the monitoring system employed in this study. The signal intensities are proportional to melt pool dimensions, and the signal is increasingly dynamic following process conditions that increase the generation of spatter.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 988
Author(s):  
Giulio Marchese ◽  
Margherita Beretta ◽  
Alberta Aversa ◽  
Sara Biamino

This study investigates the in situ alloying of a Ni-based superalloy processed by means of laser powder bed fusion (LPBF). For this purpose, Inconel 625 powder is mixed with 1 wt.% of Ti6Al4V powder. The modified alloy is characterized by densification levels similar to the base alloy, with relative density superior to 99.8%. The material exhibits Ti-rich segregations along the melt pool contours. Moreover, Ti tends to be entrapped in the interdendritic areas during solidification in the as-built state. After heat treatments, the modified Inconel 625 version presents greater hardness and tensile strengths than the base alloy in the same heat-treated conditions. For the solution annealed state, this is mainly attributed to the elimination of the segregations into the interdendritic structures, thus triggering solute strengthening. Finally, for the aged state, the further increment of mechanical properties can be attributed to a more intense formation of phases than the base alloy, due to elevated precipitation strengthening ability under heat treatments. It is interesting to note how slight chemical composition modification can directly develop new alloys by the LPBF process.


2016 ◽  
Vol 22 (5) ◽  
pp. 778-787 ◽  
Author(s):  
Brandon Lane ◽  
Shawn Moylan ◽  
Eric P. Whitenton ◽  
Li Ma

Purpose Quantitative understanding of the temperatures, gradients and heating/cooling rates in and around the melt pool in laser powder bed fusion (L-PBF) is essential for simulation, monitoring and controls development. The research presented here aims to detail experiment design and preliminary results of high speed, high magnification, in-situ thermographic monitoring setup on a commercial L-PBF system designed to capture temperatures and dynamic process phenomena. Design/methodology/approach A custom door with angled viewport was designed for a commercial L-PBF system which allows close access of an infrared camera. Preliminary finite element simulations provided size, speed and scale requirements to design camera and optics setup to capture melt pool region temperatures at high magnification and frame rate speed. A custom thermal calibration allowed maximum measurable temperature range of 500°C to 1,025°C. Raw thermographic image data were converted to temperature assuming an emissivity of 0.5. Quantitative temperature results are provided with qualitative observations with discussion regarding the inherent challenges to future thermographic measurements and process monitoring. Findings Isotherms around the melt pool change in size depending on the relative location of the laser spot with respect to the stripe edges. Locations near the edges of a stripe are cooled to lower temperatures than the center of a stripe. Temperature gradients are highly localized because of rough or powdery surface. At a specific location, temperatures rise from below the measurable temperature range to above (<550°C to >1100°C) within two frames (<1.11 m/s). Particle ejection is a notable phenomenon with measured ejection speeds >11.7 m/s. Originality/value Several works are detailed in the Introduction of this paper that detail high-speed visible imaging (not thermal imaging) of custom or commercial LBPF processes, and lower-speed thermographic measurements for defect detection. However, no work could be found that provides calibrated, high-speed temperature data from a melt-pool monitoring configuration on a commercial L-PBF system. In addition, the paper elucidates several sources of measurement uncertainty (e.g. calibration, emissivity and time and spatial resolution), describes inherent measurement challenges based on observations of the thermal images and discusses on the implications to model validation and process monitoring and control.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3463
Author(s):  
Yangyiwei Yang ◽  
Carlos Doñate-Buendía ◽  
Timileyin David Oyedeji ◽  
Bilal Gökce ◽  
Bai-Xiang Xu

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure–coupled phase-field simulation with nanoparticle kinematics. Van der Waals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ∼55% of the nanoparticles within the generated grains, and a smaller fraction of ∼30% in the pores, ∼13% on the surface, and ∼2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high-speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion (PBF) machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus–solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49–195 W) and scan speed (200–800 mm/s) are investigated, and numerous replications using a variety of scan lengths (4–12 mm) are performed. Results show that the melt pool length reaches steady-state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


Sign in / Sign up

Export Citation Format

Share Document