Theoretical Investigation of a Time-Suboptimal Control Method for Rotational Motions of Industrial Manipulators End-Effectors

2005 ◽  
Vol 44 (1) ◽  
pp. 71-92 ◽  
Author(s):  
S. Kilicaslan ◽  
Y. Ercan
Robotica ◽  
2003 ◽  
Vol 21 (2) ◽  
pp. 153-161 ◽  
Author(s):  
S. Kilicaslan ◽  
Y. Ercan

A method for the time suboptimal control of an industrial manipulator that moves along a specified path while keeping its end-effector orientation unchanged is proposed. Nonlinear system equations that describe the manipulator motion are linearized at each time step along the path. A method which gives control inputs (joint angular velocities) for time suboptimal control of the manipulator is developed. In the formulation, joint angular velocity and acceleration limitations are also taken into consideration. A six degree of freedom elbow type manipulator is used in a case study to verify the method developed.


2019 ◽  
Vol 16 (02) ◽  
pp. 1950008
Author(s):  
Fuhai Zhang ◽  
Jiadi Qu ◽  
He Liu ◽  
Yili Fu

The paper develops a multi-priority control method of asymmetric coordination for a redundant dual-arm robot. A novel dual-arm coordination impedance is introduced to the multi-priority control, and then the performance of the object tracking and the redundant joints is improved by the regulation of the relative Cartesian errors between two arms. The control of asymmetric coordination is divided into the main task and the secondary task. The control of the main task can regulate the two end-effectors’ errors and the relative errors by building the model of spatial parallel spring and damping (SPSDM), which establishes the dual-arm coordination impedance relation in Cartesian space. The control of the secondary task optimizes the performance of the redundant joint impedance and joint limit avoidance in null space. Finally, a typical asymmetric coordination experiment of peg-in-hole is carried out to verify the validity and feasibility of the proposed method. The results indicate that the proposed dual-arm coordination impedance can regulate the relative tracking errors between two objects directly, and in the context of the external impact force applied to the two end-effectors, the peg-in-hole dual-arm task can be achieved successfully.


Author(s):  
Bin Wei

Abstract The objective of this paper is to design and model a translational robotic arm that is simple and cheap to manufacture while maintaining good functionality. Once the robotic arm is designed, the control analysis and computer simulation are conducted. When selecting the material used for the parts, the density and strength of are considered. This paper covers the design process, analysis and computer simulation of a robotic arm. The final design is a 4-DOF (degrees of freedom) pick and place robot. This robot has 1 prismatic joint and 3 revolute joints. The arm is designed to be used in multiple applications such as pick and place, car wash, chalkboard erasers, etc. Forward kinematics is used to calculate the end effectors position and orientation based on the positions of each joint. The Lagrange general method is used to come up with the equation of motion. Also, the control method selected for this robot was nonlinear decoupling PD control.


Author(s):  
Ming Xin ◽  
Yunjun Xu ◽  
Ricky Hopkins

It is always a challenge to design a real-time optimal full flight envelope controller for a miniature helicopter due to the nonlinear, underactuated, uncertain, and highly coupled nature of its dynamics. This paper integrates the control of translational, rotational, and flapping motions of a simulated miniature aerobatic helicopter in one unified optimal control framework. In particular, a recently developed real-time nonlinear optimal control method, called the θ-D technique, is employed to solve the resultant challenging problem considering the full nonlinear dynamics without gain scheduling techniques and timescale separations. The uniqueness of the θ-D method is its ability to obtain an approximate analytical solution to the Hamilton–Jacobi–Bellman equation, which leads to a closed-form suboptimal control law. As a result, it can provide a great advantage in real-time implementation without a high computational load. Two complex trajectory tracking scenarios are used to evaluate the control capabilities of the proposed method in full flight envelope. Realistic uncertainties in modeling parameters and the wind gust condition are included in the simulation for the purpose of demonstrating the robustness of the proposed control law.


2012 ◽  
Vol 215-216 ◽  
pp. 1283-1290
Author(s):  
Min Zhang ◽  
Jin Wang ◽  
Guo Bing Huang

In this study, a robust H2 suboptimal control method is proposed for an electro-hydraulic system with variable supply pressure. The H2 suboptimal controller is designed to minimize the sum of a quadratic performance criterion and the H2 norm of the closed-loop transfer function from the white noise disturbance to the system state space variables. The genetic algorithm is used to select the weighting matrices of the quadratic performance criterion. In order to improve the robust performance, parameter uncertainties of the electro-hydraulic system are considered in the process of genetic search. Simulation results demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document