Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned Aerial Vehicles in Dynamic Environments

2011 ◽  
Vol 12 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Hyun-Jin Choi ◽  
You-Dan Kim ◽  
Hyoun-Jin Kim
Author(s):  
Guangtong Xu ◽  
Teng Long ◽  
Zhu Wang ◽  
Li Liu

This paper presents a modified genetic algorithm using target-bundle-based encoding and tailored genetic operators to effectively tackle cooperative multiple task assignment problems of heterogeneous unmanned aerial vehicles. In the cooperative multiple task assignment problem, multiple tasks including reconnaissance, attack, and verification have to be sequentially performed on each target (e.g. ground control stations, tanks, etc.) by one or multiple unmanned aerial vehicles. Due to the precedence constraints of different tasks, a singular task-execution order may cause deadlock situations, i.e. one or multiple unmanned aerial vehicles being trapped in infinite waiting loops. To address this problem, a target-bundled genetic algorithm is proposed. As a key element of target-bundled genetic algorithm, target-bundle-based encoding is derived to fix multiple tasks on each target as a target-bundle. And individuals are generated by fixing the task-execution order on each target-bundle subject to task precedence constraints. During the evolution process, bundle-exchange crossover and multi-type mutation operators are customized to generate deadlock-free offspring. Besides, the time coordination method is developed to ensure that task-execution time satisfies task precedence constraints. The comparison results on numerical simulations demonstrate that target-bundled genetic algorithm outperforms particle swarm optimization and random search methods in terms of optimality and efficiency.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 443 ◽  
Author(s):  
Zhe Zhao ◽  
Jian Yang ◽  
Yifeng Niu ◽  
Yu Zhang ◽  
Lincheng Shen

In this paper, the cooperative multi-task online mission planning for multiple Unmanned Aerial Vehicles (UAVs) is studied. Firstly, the dynamics of unmanned aerial vehicles and the mission planning problem are studied. Secondly, a hierarchical mechanism is proposed to deal with the complex multi-UAV multi-task mission planning problem. In the first stage, the flight paths of UAVs are generated by the Dubins curve and B-spline mixed method, which are defined as “CBC)” curves, where “C” stands for circular arc and “B” stands for B-spline segment. In the second stage, the task assignment problem is solved as multi-base multi-traveling salesman problem, in which the “CBC” flight paths are used to estimate the trajectory costs. In the third stage, the flight trajectories of UAVs are generated by using Gaussian pseudospectral method (GPM). Thirdly, to improve the computational efficiency, the continuous and differential initial trajectories are generated based on the “CBC” flight paths. Finally, numerical simulations are presented to demonstrate the proposed approach, the designed initial solution search algorithm is compared with existing methods. These results indicate that the proposed hierarchical mission planning method can produce satisfactory mission planning results efficiently.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoxuan Hu ◽  
Jing Cheng ◽  
He Luo

This paper considers a task assignment problem for multiple unmanned aerial vehicles (UAVs). The UAVs are set to perform attack tasks on a collection of ground targets in a severe uncertain environment. The UAVs have different attack capabilities and are located at different positions. Each UAV should be assigned an attack task before the mission starts. Due to uncertain information, many criteria values essential to task assignment were random or fuzzy, and the weights of criteria were not precisely known. In this study, a novel task assignment approach based on stochastic Multicriteria acceptability analysis (SMAA) method was proposed to address this problem. The uncertainties in the criteria were analyzed, and a task assignment procedure was designed. The results of simulation experiments show that the proposed approach is useful for finding a satisfactory assignment under severe uncertain circumstances.


Sign in / Sign up

Export Citation Format

Share Document