Fault-Tolerant Containment Control of Multiple Unmanned Aerial Vehicles Based on Distributed Sliding-Mode Observer

2018 ◽  
Vol 93 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Ziquan Yu ◽  
Yaohong Qu ◽  
Youmin Zhang
2016 ◽  
Vol 04 (03) ◽  
pp. 197-211 ◽  
Author(s):  
Zhixiang Liu ◽  
Chi Yuan ◽  
Xiang Yu ◽  
Youmin Zhang

This paper presents a leader-follower type of fault-tolerant formation control (FTFC) methodology with application to multiple unmanned aerial vehicles (UAVs) in the presence of actuator failures and potential collisions. The proposed FTFC scheme consists of both outer-loop and inner-loop controllers. First, a leader-follower control scheme with integration of a collision avoidance mechanism is designed as the outer-loop controller for guaranteeing UAVs to keep the desired formation while avoiding the approaching obstacles. Then, an active fault-tolerant control (FTC) strategy for counteracting the actuator failures and also for preventing the healthy actuators from saturation is synthesized as the inner-loop controller. Finally, a group of numerical simulations are carried out to verify the effectiveness of the proposed approach.


Author(s):  
Bing Han ◽  
Ju Jiang ◽  
Chaojun Yu

This article develops a distributed adaptive fault-tolerant formation control scheme for the multiple unmanned aerial vehicles to counteract actuator faults and intermittent communication interrupt, where the issues on control input saturation and mismatched uncertainties are also addressed. The discontinuous communication protocol technique is exploited to achieve the stability of the formation system, if the conditions of dwell time and the rate of communication are satisfied. On the basis of the local information of neighboring unmanned aerial vehicles, a novel distributed adaptive mechanism is designed to estimate the bounds of actuator faults and uncertainties, where the input saturation is explicitly taken into consideration. The stability of the whole formation system under the designed fault-tolerant formation control strategy is analyzed using the Lyapunov approach. Finally, simulation results are presented to illustrate the effectiveness of the proposed scheme.


2016 ◽  
Vol 353 (13) ◽  
pp. 2929-2942 ◽  
Author(s):  
Tao Han ◽  
Zhi-Hong Guan ◽  
Yonghong Wu ◽  
Ding-Fu Zheng ◽  
Xian-He Zhang ◽  
...  

Author(s):  
Shaoming He ◽  
Jiang Wang ◽  
Defu Lin

This paper investigates the problem of robust guidance law design for multiple unmanned aerial vehicles to achieve desired formation pattern for standoff tracking of an unknown ground moving target. The proposed guidance law consists of two main parts: relative range regulation and space angle control. For the first mission, a novel control law is proposed to regulate the relative distance between the unmanned aerial vehicle and the ground moving target to zero asymptotically based on adaptive sliding mode control approach. Considering the discontinuous property of the sign function, which is often used in traditional sliding mode control and will result in high-frequency chattering in the control channel, the proposed controller adopts the continuous saturation function for chattering elimination. Besides the continuous property, convergence to the origin asymptotically can be guaranteed theoretically with the proposed controller, which is quite different from traditional boundary layer technique, where only bounded motion around the sliding manifold can be ensured. For asymptotic stability, it is only required that the lumped uncertainty is bounded, but the upper bound may be unknown by virtue of the designed adaptive methodology. For space angle control, a new multiple leader–follower information architecture is introduced and an acceleration command is then derived for each unmanned aerial vehicle to space them about the loiter circle defined by the first controller. Simulation results with different conditions clearly demonstrate the superiority of the proposed formulation.


Sign in / Sign up

Export Citation Format

Share Document