Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics

2011 ◽  
Vol 22 (12) ◽  
pp. 1783-1787 ◽  
Author(s):  
Xuming Pang ◽  
Jinhao Qiu ◽  
Kongjun Zhu ◽  
Bin Shao
2007 ◽  
Vol 42 (9) ◽  
pp. 1594-1601 ◽  
Author(s):  
Hongliang Du ◽  
Fusheng Tang ◽  
Fa Luo ◽  
Dongmei Zhu ◽  
Shaobo Qu ◽  
...  

2013 ◽  
Vol 423-426 ◽  
pp. 459-462
Author(s):  
Hai Tao Li ◽  
Xiao Bo Hong ◽  
Hong Qiong Huang ◽  
Jin Feng Gong ◽  
Zhi Yuan Cheng ◽  
...  

Alkali niobate lead-free piezoelectric ceramics with nominal compositions [(Na0.52K0.48)0.94+ xLi0.06-x](Nb0.94Sb0.06)O3 ((NK)xLNS) were prepared by normal sintering. Crystalline phase, piezoelectric properties and sintering behavior of (NK)xLNS ceramics were investigated with a special emphasis on the influence of alkli metal content. The x-ray diffraction patterns and the corresponding calculation of lattice parameters indicated that a phase transition from tetragonal to orthorhombic symmetry occurs as x=0.01, resulting in enhanced piezoelectric constant and planar electromechanical coupling coefficient of 266 pC/N and 38.5%, respectively. With x=0.01, the ceramics sintered at 1050 C show higher density and better electrical properties. Our results indicate the importance of sintering temperature and elaborate compositional control for enhancing piezoelectric properties in niobate-based ceramics.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 705
Author(s):  
Yunfeng Deng ◽  
Junjun Wang ◽  
Chunxiao Zhang ◽  
Hui Ma ◽  
Chungeng Bai ◽  
...  

Structural, ferroelectric, dielectric, and piezoelectric properties of K0.5Na0.5NbO3-LiTaO3-xmol%MnO2 lead-free piezoelectric ceramics with 0.0 ≤ x ≤ 0.3 were studied. The ceramic samples were synthesized through the conventional solid-state reaction method. The MnO2 addition can reduce the sintering temperature of KNLNT ceramics. Compared with undoped KNLNT ceramic, the piezoelectric measurements showed that piezoelectric properties of K0.5Na0.5NbO3-LiTaO3-xMnO2 were improved (d33 = 251 pC/N) when x = 0.1. In addition, KNLNT-xMnO2 ceramics have larger Pr(20.59~21.97 μC/cm2) and smaller Ec(10.77~6.95 kV/cm), which indicates MnO2 has excellent softening property, which improves the ferroelectric properties of KNLNT ceramics This work adds relevant information regarding of potassium sodium niobate K0.5Na0.5NbO3 (KNN) when doped Li, Ta, Mn at the B-site.


2011 ◽  
Vol 492 ◽  
pp. 189-193
Author(s):  
Qiang Chen ◽  
Jin Xu Li ◽  
Li Hui Zhang ◽  
Yang Bai ◽  
Yan Jing Su ◽  
...  

(K,Na)NbO3-based piezoelectric ceramics are promising candidates for practical applications of lead-free piezoelectric materials due to their excellent piezoelectric properties. In this paper, lead-free piezoelectric ceramics (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3(KNL-NTS)were successfully fabricated by traditional ceramics processing. The effects of sintering temperature on the structure, density and electrical properties of KNL-NTS ceramics were investigated. Crystal phases of both calcined powders and KNL-NTS ceramics have orthorhombic structure similar to that of KNbO3 ceramics. The piezoelectric coefficient first increases and then decreases with sintering temperature in the 1100-1180 °C range. KNL-NTS ceramics sintered at 1160 °C shows the maximum piezoelectric coefficient of about 199 pC·N-1and the maximum remnant polarization of 18.75 μC·cm-2, with the corresponding 10.95 kV·cm-1coercive field and 4.74 g/cm3density.


2011 ◽  
Vol 415-417 ◽  
pp. 1679-1682
Author(s):  
Hai Tao Li ◽  
Bo Ping Zhang ◽  
Qian Li ◽  
Rong Hui Xu

Li-doped (Na, K)NbO3lead-free piezoelectric ceramics with nominal composition of [Li0.065(Na0.535K0.48)0.95]NbO3were prepared by normal sintering method, and its phase structure, microstructure and electric properties were studied with a special emphasis on the influence of sintering temperature in the range of 950-1020 oC. The result of XRD analysis indicates that a polymorphic phase transition (PPT) separating orthorhombic and tetragonal phases was found at the temperature of 950 oC, whereby enhanced piezoelectric properties of d33=255 pC/N and kp= 44.5% were obtained although the density was low. Our study indicates that the importance of PPT for enhancing electric properties in niobate-based ceramics at low temperature.


2015 ◽  
Vol 740 ◽  
pp. 3-6
Author(s):  
Guo Yuan Cheng ◽  
Xing Hua Fu ◽  
Xin Jin ◽  
Wen Hong Tao ◽  
Yu Qin Qiang

KNN-BF piezoelectric ceramics synthesized by sol-gel method in this experiment. By controlling bismuth and iron content in the system to study effects of them. We selected citric acid as metal chelator and ethylene glycol as esterification agent. PH maintained 5-6 during preparation of the sol. Sintering temperature of ceramic selected 1100°C. Preparation ceramics under these conditions and comparative analysis, the structure of ceramics is single perovskite and shap of crystals are square block. With the increase of x, properties of ceramics firstly increases and then decreases: d33, εr, Qm, Kpreaching the maximum, values of them were 136pC/N, 630(f =1KHz), 212, 0.41 respectively; dielectric loss to minimum is 0.07(f =1KHz); at this point, ceramics had best performance.


2011 ◽  
Vol 492 ◽  
pp. 194-197 ◽  
Author(s):  
Yue Fang Wang ◽  
Xiu Jie Yi ◽  
Wei Pan ◽  
Guo Zhong Zang ◽  
Juan Du

Lead-free (1-x-y)Na1/2Bi1/2TiO3-xBaTiO3-yBiFeO3 ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure. The dielectric and piezoelectric properties of ceramics were investigated with the amount of different BiFeO3 substitutions. The addition of BiFeO3 can not only decrease Ec and Pr but also lead to a significant degradation of the dielectric loss tanδ.


Sign in / Sign up

Export Citation Format

Share Document