piezoelectric coefficient
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 80)

H-INDEX

36
(FIVE YEARS 7)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7127
Author(s):  
Alicia Petronela Rambu ◽  
Vasile Tiron ◽  
Eugen Oniciuc ◽  
Sorin Tascu

The α-phase waveguides directly produced in one fabrication step only are well known for preserving both the excellent nonlinear properties and the ferroelectric domains orientation of lithium niobate substrates. However, by using the piezoresponse force microscopy (PFM), we present a coherent study on ferroelectric dipoles switching induced by the fabrication process of α-phase waveguides on Z-cut congruent lithium niobate (CLN) substrates. The obtained results show that the proton exchange process induces a spontaneous polarization reversal and a reduction in the piezoelectric coefficient d33. The quantitative assessments of the impact of proton exchange on the piezoelectric coefficient d33 have been quantified for different fabrication parameters. By coupling systematic PFM investigation and optical characterizations of α-phase protonated regions and virgin CLN on ±Z surfaces of the samples, we find a very good agreement between index contrast (optical investigation) and d33 reduction (PFM investigations). We clearly show that the increase in the in-diffused proton concentration (increase in index contrast) in protonated zones decreases the piezoelectric coefficient d33 values. Furthermore, having a high interest in nonlinear performances of photonics devices based on PPLN substrates, we have also investigated how deep the spontaneous polarization reversal induced by proton exchange takes place inside the α-phase channel waveguides.


2021 ◽  
Vol 12 ◽  
pp. 1262-1270
Author(s):  
Marco Fortunato ◽  
Alessio Tamburrano ◽  
Maria Paola Bracciale ◽  
Maria Laura Santarelli ◽  
Maria Sabrina Sarto

In the last years flexible, low-cost, wearable, and innovative piezoelectric nanomaterials have attracted considerable interest regarding the development of energy harvesters and sensors. Among the piezoelectric materials, special attention has been paid to electroactive polymers such as poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe), which is one of the most extensively investigated piezoelectric polymers, due to the high β phase content resulting from specific curing or processing conditions. However, to obtain a high piezoelectric coefficient (d33) alignment of the β phase domains is needed, which is usually reached through applying a high electric field at moderate temperatures. This process, usually referred to as electrical poling, requires the deposition of contact electrodes on the sample surface and the use of high-voltage apparatus. In the present work, in order to overcome these constraints, we have produced, characterized, and studied a polymer nanocomposite consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β phase alignment through an applied DC magnetic field. The magnetic poling was demonstrated to be particularly effective, leading to a piezoelectric coefficient d33 with values up to 39 pm/V. This type of poling does not need the use of a top electrode or of high magnetic fields (the maximum value of d33 was obtained at 50 mT, using a current of 0.4 A) making the PVDF-TrFE/CoFe2O4 nanocomposite suitable for the fabrication of highly efficient devices for energy harvesting and wearable sensors.


2021 ◽  
Author(s):  
Jyoti Shakya ◽  
Gayathri H N ◽  
Arindam Ghosh

Abstract MoS2 is an intrinsic piezoelectric material which offers applications such as energy harvesting, sensors, actuators, flexible electronics, energy storage and more. Surprisingly, there are not any suitable, yet economical methods that can produce quality nanosheets of MoS2 in large quantities, hence limiting the possibility of commercialisation of its applications. Here, we demonstrate controlled synthesis of highly crystalline MoS2 nanosheets via liquid phase exfoliation of bulk MoS2, following which we report piezoelectric response from the exfoliated nanosheets. The method of piezo force microscopy (PFM) was employed to explore the piezo response in mono, bi, tri and multilayers of MoS2 nanosheets. The effective piezoelectric coefficient of MoS2 varies from 9.6 pm/V to 25.14 pm/V. We attribute piezoelectric response in MoS2 nanosheets to the defects formed in it during the synthesis procedure. The presence of defects is confirmed by X-ray photoelectron spectroscopy (XPS).


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2912
Author(s):  
Marina V. Il’ina ◽  
Oleg I. Il’in ◽  
Nikolay N. Rudyk ◽  
Olga I. Osotova ◽  
Alexander A. Fedotov ◽  
...  

Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs. An original technique for evaluating the effective piezoelectric coefficient of CNTs is presented. For the first time, in this study, we investigate the influence of the growth temperature and thickness of the catalytic Ni layer on the value of the piezoelectric coefficient of CNTs. We establish the relationship between the effective piezoelectric coefficient of CNTs and their defectiveness and diameter, which determines the curvature of the graphene sheet surface. The calculated values of the effective piezoelectric coefficient of CNTs are shown to be between 0.019 and 0.413 C/m2, depending on the degree of their defectiveness and diameter.


Author(s):  
Mingfang Shu ◽  
Bingbing Yang ◽  
Miao Liu ◽  
Shunjin Zhu ◽  
Sumei Li ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoran Hu ◽  
Mengli You ◽  
Na Yi ◽  
Xiaokun Zhang ◽  
Yong Xiang

The d33 coefficient = 28 pC/N of PVDF-TrFE piezoelectric films was achieved by the in situ polarization. Compared with traditional poling methods, the in situ polarization is performed with low poling voltage and short poling time, and it can ensure the PVDF-TrFE film with enhanced piezoelectric performances and uniform distribution among a large area of 200 mm2 × 200 mm2. The processing influence of drying, annealing, and poling on the crystalline properties and piezoelectric performances were investigated. Besides, the obtained PVDF-TrFE films present a good piezoelectric response to different extents of mechanical stimulations, which have great potential in energy harvesting applications.


2021 ◽  
Author(s):  
Marco Fortunato ◽  
Alessio Tamburrano ◽  
Maria Paola Bracciale ◽  
Maria Laura Santarelli ◽  
Maria Sabrina Sarto

In the last years flexible, low-cost, wearable and innovative piezoelectric nanomaterials, have attracted a considerable interest to develop energy harvesters and sensors. Among the piezoelectric materials, a special focus was paid on  electroactive polymers such as Poly(vinylidene fluoride) [PVDF] and on its copolymer Poly(vinylidene fluoride-co-trifluoroethylene) [PVDF-TrFe], which is one of the most investigated piezoelectric polymers, due to the high β-phase content resulting under specific curing or processing conditions. However, to get high piezoelectric coefficient (d33), alignment of the β-phase domains is needed, which is usually obtained by applying a high electric fields at moderate temperatures. This process, usually referred as electrical poling, requires the deposition of contact electrodes over the sample surface, and the use of high voltage apparatus.   In the present work, in order to overcome these constraints we have produced, characterized and studied a polymer nanocomposite, consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β-phase alignment through and applied a DC magnetic fields. The magnetic poling was demonstrated to be particular effective, leading to a piezoelectric coefficient, d33, with values up to 39 pm/V. The magnetic poling does not need the use a top electrode and of high magnetic fields (the maximum value of d33 was obtained at 50 mT, using a current of 0.4 A) making the PVDF-TrFE/CoFe2O4 nanocomposite suitable for the fabrication of highly efficient devices for energy harvesting and wearable sensors.


Author(s):  
Phan Dinh Gio ◽  
Huynh Thi Chi ◽  
Le Tran Uyen Tu ◽  
Nguyen Truong Tho

Samples of 0.96(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric ceramic were fabricated with conventional ceramic techniques and sintered at different temperatures. The effect of sintering temperature (TS) on the structure, microstructure, and piezoelectric properties of the ceramics was studied in detail. The experimental results showed that with an increase of the TS temperature, the structure of the ceramics transformed from an orthorhombic-tetragonal mixed phase (O-T) at TS £ 1100 °C into a rhombohedral-tetragonal (R-T) mixed phase with a dense microstructure of uniform grain size at TS = 1110 °C. When TS was further increased (TS ³ 1120 °C), the ceramics showed only a rhombohedral phase (R). The ceramics showed the best electrical properties for TS = 1110 °C at which the rhombohedral and tetragonal (R-T) phases coexist. Specifically, the ceramic density reached its highest value (4.22 g/cm3), the electromechanical coupling coefficients kp and kt were 0.46 and 0.50, respectively, and the piezoelectric coefficient d33 was 245 pC/N.


Sign in / Sign up

Export Citation Format

Share Document