Insights into theoretical and practical characteristics of capacitive flexible tactile sensor based on spherical surface plate

Author(s):  
Yong Hui Gao ◽  
Yu Qing Bi ◽  
Ji Hui Lang ◽  
Qi Zhang
2011 ◽  
Vol 25 (2) ◽  
pp. 129-134
Author(s):  
Guanghui Cao ◽  
Ying Huang ◽  
Wu Zhang ◽  
Caixia Liu

2013 ◽  
Vol 27 (1) ◽  
pp. 57-63
Author(s):  
Ying Huang ◽  
Wei Miao ◽  
Leiming Li ◽  
Wenting Cai ◽  
Qinghua Yang ◽  
...  
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


Author(s):  
Xue-Feng Zhao ◽  
Xiao-Hong Wen ◽  
Peng Sun ◽  
Cheng Zeng ◽  
Meng-Yang Liu ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Pengfei Li ◽  
Guofu Zhai ◽  
Wenjing Pang ◽  
Wen Hui ◽  
Wenjuan Zhang ◽  
...  

In this study, a new moving amplification matching algorithm was proposed, and then the temporal and spatial differences and correlation were analysed and evaluated by comparing the FengYun-4A Lightning Mapping Imager (FY-4A LMI) data and the China Meteorological Administration Lightning Detection Network Advanced TOA and Direction (CMA-LDN ADTD) system data of southwest China in July 2018. The results are as follows. Firstly, the new moving amplification matching algorithm could effectively reduce the number of invalid operations and save the operation time in comparison to the conventional ergodic algorithms. Secondly, LMI has less detection efficiency during the daytime, using ADTD as a reference. The lightning number detected by ADTD increased from 5:00 AM UTC (13:00 PM BJT, Beijing Time) and almost lasted for a whole day. Thirdly, the trends of lightning data change of LMI and ADTD were the same as the whole. The average daily lightning matching rate of the LMI in July was 63.23%. The average hourly lightning matching rate of the LMI in July was 75.08%. Lastly, the mean value of the spherical surface distance in the matched array was 35.49 km, and roughly 80% of the matched distance was within 57 km, indicating that the spatial threshold limit was relatively stable. The correlation between LMI lightning radiation intensity and ADTD lighting current intensity was low.


2021 ◽  
Vol 13 (5) ◽  
pp. 6394-6403
Author(s):  
Byung Ku Jung ◽  
Sanghyun Jeon ◽  
Ho Kun Woo ◽  
Taesung Park ◽  
Junhyuk Ahn ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document