Analysis of giant dielectric permittivity and electrical properties for energy storage devices through impedance spectroscopy in CaCu3Ti4O12

Author(s):  
Sukhanidhan Singh ◽  
Abhinav Yadav ◽  
Manisha Kumari ◽  
P. M. Sarun
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jinghui Gao ◽  
Yan Wang ◽  
Yongbin Liu ◽  
Xinghao Hu ◽  
Xiaoqin Ke ◽  
...  

Author(s):  
Monica Rivera ◽  
Daniel P. Cole ◽  
Mark Bundy

A major challenge in micro unmanned vehicle and, in particular, micro aerial vehicle development stems from the lack of suitable energy storage devices. Demanding voltage and power requirements and stringent size and weight constraints significantly limit the number and type of batteries that can be housed in the micro vehicle structures. As a result, vehicle payloads and endurance times are significantly compromised. One approach to solving this issue would be to develop multifunctional energy storage devices that are capable of supplying energy to the vehicle while bearing some of the vehicle’s structural loads. In doing so, the amount of mass available for payload and/or additional energy storage devices can be increased. Recently, researchers have demonstrated the ability to produce lightweight, flexible batteries and supercapacitors based on carbon nanotubes and graphene. Due to their low mass, small size, and energy storing potential, carbon nanomaterial-based energy storage devices are excellent candidates for use in micro vehicle applications. However, due to the rapid pace in which the nanoscience field is advancing, there is limited information on how different materials, processing techniques, and device architectures influence the electrical properties of the device under investigation. In this study, we will systematically review these variables in an effort to discover how the materials and structure of the electrode and separator might be tailored to achieve both the desired material properties and the highest energy density per device weight and volume.


Author(s):  
Kirill Lvovich Levin ◽  
Rojerio V. Jelamo ◽  
Nikolay S. Pshchelko ◽  
Samuil D. Khanin

Graphenes in the form of flexible thin films treated with different types of plasma were investigated by Mott-Schottky analysis. The possibility of variation of electrical conductivity in graphene prepared by plasma treatment was shown. Obtained materials are promising for electric energy storage devices.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document