scholarly journals Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique

2006 ◽  
Vol 17 (6) ◽  
pp. 501-507 ◽  
Author(s):  
Swadesh K. Pratihar ◽  
Mayank Garg ◽  
Supreet Mehra ◽  
S. Bhattacharyya
2021 ◽  
Author(s):  
Sushobhita Chawla ◽  
Garima Aggarwal ◽  
Akash Kumar ◽  
Akhilender Jeet Singh ◽  
Dr. Balasubramaniam Kavaipatti

Lowering the synthesis temperature to obtain phase pure BaSnO3, which is the host material for high figure-of-merit (FOM) perovskite transparent conductors (TCs), can expand the horizons for its optoelectronic applications, with an obvious reduction in the thermal budget. In this work, we have developed a novel solution combustion technique for the synthesis of BaSnO3 nanoparticles. A peroxo/superoxo precursor to the nanoparticles is first synthesized by co-precipitation of the tin and barium salts via the H2O2 assisted or the `CSMC' route. The phase evolution, under different drying conditions of the wet precursor to crystalline BaSnO3 nanoparticles is then studied. We find that the crystallization temperature of BaSnO3 is significantly reduced by adding an organic solvent such as ethanol or propanol to the precursor; temperatures as low as 130 °C yield phase pure BaSnO3 nanoparticles. We establish that the organic solvent increases the reactive O2 ligand content, which plays a pivotal role in the synthesis. Due to this, an exothermic reaction occurs around 130 °C, thereby providing the heat of reaction for conversion of the precursor to phase-pure BaSnO3. Importantly, this method should also allow for the facile incorporation of dopants, paving the way for synthesis of high FOM TCs at low temperatures. Such low synthesis temperatures enable BaSnO3 to be used in devices having temperature limitations during device processing, such as heterojunction Si solar cells or perovskite-based solar cells in an n-i-p architecture.


2007 ◽  
Vol 43 (2) ◽  
pp. 153-155
Author(s):  
N. F. Kosenko ◽  
N. V. Filatova ◽  
A. A. Shiganov

2021 ◽  
Vol 272 ◽  
pp. 115369
Author(s):  
Masashi Watanabe ◽  
Takayuki Seki

2001 ◽  
Vol 189-191 ◽  
pp. 120-125 ◽  
Author(s):  
J. Marchi ◽  
José Carlos Bressiani ◽  
Ana Helena A. Bressiani

2011 ◽  
Vol 14 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Reinaldo Azevedo Vargas ◽  
Everton Bonturim ◽  
Rubens Chiba ◽  
Marco Andreoli ◽  
Emília Satoshi Miymaru Seo

2011 ◽  
Vol 43 (2) ◽  
pp. 127-132 ◽  
Author(s):  
V.N. Antsiferov ◽  
S.E. Porozova ◽  
V.B. Kulmetyeva

Effect of various stabilizing additives on sintering kinetics of nanodisperse powders was studied by thermomechanical analysis. Temperature ranges of the most intense shrinking, characteristic points of shrinking rate changes were established. Peaks characterizing the most intense shrinking of nanodisperse zirconium powder samples were shown to allow to arrange the stabilizing additives as follows: Y2O3?CeO2?TiO2.


2015 ◽  
Vol 46 (3) ◽  
pp. 1542-1547 ◽  
Author(s):  
Wenchao Zhou ◽  
Frederick A. List ◽  
Chad E. Duty ◽  
Sudarsanam S. Babu

Sign in / Sign up

Export Citation Format

Share Document