Singlet and Triplet State Properties and Singlet Oxygen Yield of an Amino-Acyl-Quinoxalinone Yellow Dye

Author(s):  
Souad A. Mousa ◽  
Peter Douglas ◽  
Hugh D. Burrows ◽  
Bice S. Martincigh
2019 ◽  
Vol 55 (38) ◽  
pp. 5511-5514 ◽  
Author(s):  
John B. Jarman ◽  
Dennis A. Dougherty

A heptamethine-based charge-transfer dye was designed based on previous evidence of triplet state formation in orthogonal charge-transfer partners and calculations suggesting the formation of a charge-transfer state in heptamethine dye derivatives.


2000 ◽  
Author(s):  
Terence A. King ◽  
Mohammad Ahmad ◽  
Anthony Gorman ◽  
I. Hamblett ◽  
Mark D. Rahn

Author(s):  
Marta Pineiro ◽  
Ana L. Carvalho ◽  
Mariette M. Pereira ◽  
A. M. d'A. Rocha Gonsalves ◽  
Luís G. Arnaut ◽  
...  

1995 ◽  
Vol 22 (2) ◽  
pp. 201 ◽  
Author(s):  
J Barber

Using isolated reaction centres and cores of photosystem I1 (PSII) it has been possible to elucidate the details of two separate pathways which lead to photoinhibition. The acceptor side pathway involves charge recombination resulting in the formation of the triplet state of the primary electron donor, P680. This triplet state is harmless in the absence of oxygen but in its presence gives rise to highly reactive singlet oxygen. We have shown that this singlet oxygen specifically attacks the chlorophyll of P680 itself. This process, plus other possibilities, gives rise to degradation of Dl protein involving a primary cleavage in the stromal loop joining putative transmembrane regions four and five, to yield 23 kDa N-terminal and 10 kDa C-terminal fragments. In contrast a donor side pathway is oxygen independent and is due to detrimental secondary oxidations brought about by P680+. Oxidation of accessory chlorophyll (C670) and β-carotene are observed and D1 protein is degraded by a primary cleavage in the lumenal loop between the putative transmembrane segments one and two to yield 24 kDa C-terminal and 9 kDa N-terminal fragments. In vivo studies indicate that the acceptor pathway is more common. The reason for the inherent vulnerability of PSII to photoinduced damage is discussed in terms of the special nature of P68O and the implications of the role of cytochrome b559 as a versatile protectant against donor and acceptor side photoinactivation is also considered. The likely dimeric organisation of PSII in vivo adds an additional factor to the general discussion of the molecular processes which underlie the vulnerability of PSII to photoinduced damage.


2007 ◽  
Vol 186 (2-3) ◽  
pp. 187-193 ◽  
Author(s):  
Lucimara P.F. Aggarwal ◽  
Mauricio S. Baptista ◽  
Iouri E. Borissevitch

2014 ◽  
Vol 18 (04) ◽  
pp. 326-335 ◽  
Author(s):  
Yusuf Yılmaz ◽  
John Mack ◽  
M. Kasım Şener ◽  
Mehmet Sönmez ◽  
Tebello Nyokong

The synthesis of metal free, magnesium and zinc tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanine derivatives (2–4) is described along with their characterization by elemental analysis, IR, UV-visible absorption, and 1 H NMR spectroscopy and mass spectrometry. Trends observed in the fluorescence, triplet state, singlet oxygen and photodegradation quantum yields and the triplet state lifetimes are also analyzed. The compounds exhibit high solubility in a wide range of organic solvents and no evidence of aggregation was observed over a wide concentration range. The Zn ( II ) complex (4) was found to have a very high singlet oxygen quantum yield (ΦΔ = 0.78) in dimethylsulfoxide (DMSO) and a reasonably large triplet state quantum yield (ΦT = 0.82). The photophysical and photochemical properties clearly demonstrate that these compounds could prove useful in singlet oxygen applications such as photodynamic therapy (PDT). DFT and TD-DFT calculations were used to assess the impact of the positional isomerism of the 2-benzoyl-4-chlorophenoxy substituents on the electronic structures and optical spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document